Metamath Proof Explorer


Theorem lduallkr3

Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lduallkr3.h
|- H = ( LSHyp ` W )
lduallkr3.f
|- F = ( LFnl ` W )
lduallkr3.k
|- K = ( LKer ` W )
lduallkr3.d
|- D = ( LDual ` W )
lduallkr3.o
|- .0. = ( 0g ` D )
lduallkr3.w
|- ( ph -> W e. LVec )
lduallkr3.g
|- ( ph -> G e. F )
Assertion lduallkr3
|- ( ph -> ( ( K ` G ) e. H <-> G =/= .0. ) )

Proof

Step Hyp Ref Expression
1 lduallkr3.h
 |-  H = ( LSHyp ` W )
2 lduallkr3.f
 |-  F = ( LFnl ` W )
3 lduallkr3.k
 |-  K = ( LKer ` W )
4 lduallkr3.d
 |-  D = ( LDual ` W )
5 lduallkr3.o
 |-  .0. = ( 0g ` D )
6 lduallkr3.w
 |-  ( ph -> W e. LVec )
7 lduallkr3.g
 |-  ( ph -> G e. F )
8 eqid
 |-  ( Base ` W ) = ( Base ` W )
9 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
10 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
11 8 9 10 1 2 3 6 7 lkrshp3
 |-  ( ph -> ( ( K ` G ) e. H <-> G =/= ( ( Base ` W ) X. { ( 0g ` ( Scalar ` W ) ) } ) ) )
12 lveclmod
 |-  ( W e. LVec -> W e. LMod )
13 6 12 syl
 |-  ( ph -> W e. LMod )
14 8 9 10 4 5 13 ldual0v
 |-  ( ph -> .0. = ( ( Base ` W ) X. { ( 0g ` ( Scalar ` W ) ) } ) )
15 14 neeq2d
 |-  ( ph -> ( G =/= .0. <-> G =/= ( ( Base ` W ) X. { ( 0g ` ( Scalar ` W ) ) } ) ) )
16 11 15 bitr4d
 |-  ( ph -> ( ( K ` G ) e. H <-> G =/= .0. ) )