| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualv0.v |
|- V = ( Base ` W ) |
| 2 |
|
ldualv0.r |
|- R = ( Scalar ` W ) |
| 3 |
|
ldualv0.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
ldualv0.d |
|- D = ( LDual ` W ) |
| 5 |
|
ldualv0.o |
|- O = ( 0g ` D ) |
| 6 |
|
ldualv0.w |
|- ( ph -> W e. LMod ) |
| 7 |
|
eqid |
|- ( LFnl ` W ) = ( LFnl ` W ) |
| 8 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 9 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
| 10 |
2 3 1 7
|
lfl0f |
|- ( W e. LMod -> ( V X. { .0. } ) e. ( LFnl ` W ) ) |
| 11 |
6 10
|
syl |
|- ( ph -> ( V X. { .0. } ) e. ( LFnl ` W ) ) |
| 12 |
7 2 8 4 9 6 11 11
|
ldualvadd |
|- ( ph -> ( ( V X. { .0. } ) ( +g ` D ) ( V X. { .0. } ) ) = ( ( V X. { .0. } ) oF ( +g ` R ) ( V X. { .0. } ) ) ) |
| 13 |
1 2 8 3 7 6 11
|
lfladd0l |
|- ( ph -> ( ( V X. { .0. } ) oF ( +g ` R ) ( V X. { .0. } ) ) = ( V X. { .0. } ) ) |
| 14 |
12 13
|
eqtrd |
|- ( ph -> ( ( V X. { .0. } ) ( +g ` D ) ( V X. { .0. } ) ) = ( V X. { .0. } ) ) |
| 15 |
4 6
|
ldualgrp |
|- ( ph -> D e. Grp ) |
| 16 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 17 |
7 4 16 6 11
|
ldualelvbase |
|- ( ph -> ( V X. { .0. } ) e. ( Base ` D ) ) |
| 18 |
16 9 5
|
grpid |
|- ( ( D e. Grp /\ ( V X. { .0. } ) e. ( Base ` D ) ) -> ( ( ( V X. { .0. } ) ( +g ` D ) ( V X. { .0. } ) ) = ( V X. { .0. } ) <-> O = ( V X. { .0. } ) ) ) |
| 19 |
15 17 18
|
syl2anc |
|- ( ph -> ( ( ( V X. { .0. } ) ( +g ` D ) ( V X. { .0. } ) ) = ( V X. { .0. } ) <-> O = ( V X. { .0. } ) ) ) |
| 20 |
14 19
|
mpbid |
|- ( ph -> O = ( V X. { .0. } ) ) |