Metamath Proof Explorer


Theorem lfladd0l

Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfladd0l.v
|- V = ( Base ` W )
lfladd0l.r
|- R = ( Scalar ` W )
lfladd0l.p
|- .+ = ( +g ` R )
lfladd0l.o
|- .0. = ( 0g ` R )
lfladd0l.f
|- F = ( LFnl ` W )
lfladd0l.w
|- ( ph -> W e. LMod )
lfladd0l.g
|- ( ph -> G e. F )
Assertion lfladd0l
|- ( ph -> ( ( V X. { .0. } ) oF .+ G ) = G )

Proof

Step Hyp Ref Expression
1 lfladd0l.v
 |-  V = ( Base ` W )
2 lfladd0l.r
 |-  R = ( Scalar ` W )
3 lfladd0l.p
 |-  .+ = ( +g ` R )
4 lfladd0l.o
 |-  .0. = ( 0g ` R )
5 lfladd0l.f
 |-  F = ( LFnl ` W )
6 lfladd0l.w
 |-  ( ph -> W e. LMod )
7 lfladd0l.g
 |-  ( ph -> G e. F )
8 1 fvexi
 |-  V e. _V
9 8 a1i
 |-  ( ph -> V e. _V )
10 eqid
 |-  ( Base ` R ) = ( Base ` R )
11 2 10 1 5 lflf
 |-  ( ( W e. LMod /\ G e. F ) -> G : V --> ( Base ` R ) )
12 6 7 11 syl2anc
 |-  ( ph -> G : V --> ( Base ` R ) )
13 4 fvexi
 |-  .0. e. _V
14 13 a1i
 |-  ( ph -> .0. e. _V )
15 2 lmodring
 |-  ( W e. LMod -> R e. Ring )
16 ringgrp
 |-  ( R e. Ring -> R e. Grp )
17 6 15 16 3syl
 |-  ( ph -> R e. Grp )
18 10 3 4 grplid
 |-  ( ( R e. Grp /\ k e. ( Base ` R ) ) -> ( .0. .+ k ) = k )
19 17 18 sylan
 |-  ( ( ph /\ k e. ( Base ` R ) ) -> ( .0. .+ k ) = k )
20 9 12 14 19 caofid0l
 |-  ( ph -> ( ( V X. { .0. } ) oF .+ G ) = G )