Step |
Hyp |
Ref |
Expression |
1 |
|
ldualv0.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ldualv0.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
ldualv0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
ldualv0.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
5 |
|
ldualv0.o |
⊢ 𝑂 = ( 0g ‘ 𝐷 ) |
6 |
|
ldualv0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
eqid |
⊢ ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
10 |
2 3 1 7
|
lfl0f |
⊢ ( 𝑊 ∈ LMod → ( 𝑉 × { 0 } ) ∈ ( LFnl ‘ 𝑊 ) ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → ( 𝑉 × { 0 } ) ∈ ( LFnl ‘ 𝑊 ) ) |
12 |
7 2 8 4 9 6 11 11
|
ldualvadd |
⊢ ( 𝜑 → ( ( 𝑉 × { 0 } ) ( +g ‘ 𝐷 ) ( 𝑉 × { 0 } ) ) = ( ( 𝑉 × { 0 } ) ∘f ( +g ‘ 𝑅 ) ( 𝑉 × { 0 } ) ) ) |
13 |
1 2 8 3 7 6 11
|
lfladd0l |
⊢ ( 𝜑 → ( ( 𝑉 × { 0 } ) ∘f ( +g ‘ 𝑅 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) ) |
14 |
12 13
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑉 × { 0 } ) ( +g ‘ 𝐷 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) ) |
15 |
4 6
|
ldualgrp |
⊢ ( 𝜑 → 𝐷 ∈ Grp ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
17 |
7 4 16 6 11
|
ldualelvbase |
⊢ ( 𝜑 → ( 𝑉 × { 0 } ) ∈ ( Base ‘ 𝐷 ) ) |
18 |
16 9 5
|
grpid |
⊢ ( ( 𝐷 ∈ Grp ∧ ( 𝑉 × { 0 } ) ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑉 × { 0 } ) ( +g ‘ 𝐷 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) ↔ 𝑂 = ( 𝑉 × { 0 } ) ) ) |
19 |
15 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑉 × { 0 } ) ( +g ‘ 𝐷 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) ↔ 𝑂 = ( 𝑉 × { 0 } ) ) ) |
20 |
14 19
|
mpbid |
⊢ ( 𝜑 → 𝑂 = ( 𝑉 × { 0 } ) ) |