Metamath Proof Explorer


Theorem ldual0v

Description: The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldualv0.v 𝑉 = ( Base ‘ 𝑊 )
ldualv0.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualv0.z 0 = ( 0g𝑅 )
ldualv0.d 𝐷 = ( LDual ‘ 𝑊 )
ldualv0.o 𝑂 = ( 0g𝐷 )
ldualv0.w ( 𝜑𝑊 ∈ LMod )
Assertion ldual0v ( 𝜑𝑂 = ( 𝑉 × { 0 } ) )

Proof

Step Hyp Ref Expression
1 ldualv0.v 𝑉 = ( Base ‘ 𝑊 )
2 ldualv0.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldualv0.z 0 = ( 0g𝑅 )
4 ldualv0.d 𝐷 = ( LDual ‘ 𝑊 )
5 ldualv0.o 𝑂 = ( 0g𝐷 )
6 ldualv0.w ( 𝜑𝑊 ∈ LMod )
7 eqid ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 )
8 eqid ( +g𝑅 ) = ( +g𝑅 )
9 eqid ( +g𝐷 ) = ( +g𝐷 )
10 2 3 1 7 lfl0f ( 𝑊 ∈ LMod → ( 𝑉 × { 0 } ) ∈ ( LFnl ‘ 𝑊 ) )
11 6 10 syl ( 𝜑 → ( 𝑉 × { 0 } ) ∈ ( LFnl ‘ 𝑊 ) )
12 7 2 8 4 9 6 11 11 ldualvadd ( 𝜑 → ( ( 𝑉 × { 0 } ) ( +g𝐷 ) ( 𝑉 × { 0 } ) ) = ( ( 𝑉 × { 0 } ) ∘f ( +g𝑅 ) ( 𝑉 × { 0 } ) ) )
13 1 2 8 3 7 6 11 lfladd0l ( 𝜑 → ( ( 𝑉 × { 0 } ) ∘f ( +g𝑅 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) )
14 12 13 eqtrd ( 𝜑 → ( ( 𝑉 × { 0 } ) ( +g𝐷 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) )
15 4 6 ldualgrp ( 𝜑𝐷 ∈ Grp )
16 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
17 7 4 16 6 11 ldualelvbase ( 𝜑 → ( 𝑉 × { 0 } ) ∈ ( Base ‘ 𝐷 ) )
18 16 9 5 grpid ( ( 𝐷 ∈ Grp ∧ ( 𝑉 × { 0 } ) ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑉 × { 0 } ) ( +g𝐷 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) ↔ 𝑂 = ( 𝑉 × { 0 } ) ) )
19 15 17 18 syl2anc ( 𝜑 → ( ( ( 𝑉 × { 0 } ) ( +g𝐷 ) ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) ↔ 𝑂 = ( 𝑉 × { 0 } ) ) )
20 14 19 mpbid ( 𝜑𝑂 = ( 𝑉 × { 0 } ) )