| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lduallkr3.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
| 2 |
|
lduallkr3.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 3 |
|
lduallkr3.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
| 4 |
|
lduallkr3.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 5 |
|
lduallkr3.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
| 6 |
|
lduallkr3.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
lduallkr3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
8 9 10 1 2 3 6 7
|
lkrshp3 |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ↔ 𝐺 ≠ ( ( Base ‘ 𝑊 ) × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
| 12 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 14 |
8 9 10 4 5 13
|
ldual0v |
⊢ ( 𝜑 → 0 = ( ( Base ‘ 𝑊 ) × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 15 |
14
|
neeq2d |
⊢ ( 𝜑 → ( 𝐺 ≠ 0 ↔ 𝐺 ≠ ( ( Base ‘ 𝑊 ) × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
| 16 |
11 15
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ↔ 𝐺 ≠ 0 ) ) |