| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkr0f2.v |
|- V = ( Base ` W ) |
| 2 |
|
lkr0f2.f |
|- F = ( LFnl ` W ) |
| 3 |
|
lkr0f2.k |
|- K = ( LKer ` W ) |
| 4 |
|
lkr0f2.d |
|- D = ( LDual ` W ) |
| 5 |
|
lkr0f2.o |
|- .0. = ( 0g ` D ) |
| 6 |
|
lkr0f2.w |
|- ( ph -> W e. LMod ) |
| 7 |
|
lkr0f2.g |
|- ( ph -> G e. F ) |
| 8 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 9 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 10 |
8 9 1 2 3
|
lkr0f |
|- ( ( W e. LMod /\ G e. F ) -> ( ( K ` G ) = V <-> G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) ) |
| 11 |
6 7 10
|
syl2anc |
|- ( ph -> ( ( K ` G ) = V <-> G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) ) |
| 12 |
1 8 9 4 5 6
|
ldual0v |
|- ( ph -> .0. = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) |
| 13 |
12
|
eqeq2d |
|- ( ph -> ( G = .0. <-> G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) ) |
| 14 |
11 13
|
bitr4d |
|- ( ph -> ( ( K ` G ) = V <-> G = .0. ) ) |