Metamath Proof Explorer


Theorem lkr0f2

Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lkr0f2.v 𝑉 = ( Base ‘ 𝑊 )
lkr0f2.f 𝐹 = ( LFnl ‘ 𝑊 )
lkr0f2.k 𝐾 = ( LKer ‘ 𝑊 )
lkr0f2.d 𝐷 = ( LDual ‘ 𝑊 )
lkr0f2.o 0 = ( 0g𝐷 )
lkr0f2.w ( 𝜑𝑊 ∈ LMod )
lkr0f2.g ( 𝜑𝐺𝐹 )
Assertion lkr0f2 ( 𝜑 → ( ( 𝐾𝐺 ) = 𝑉𝐺 = 0 ) )

Proof

Step Hyp Ref Expression
1 lkr0f2.v 𝑉 = ( Base ‘ 𝑊 )
2 lkr0f2.f 𝐹 = ( LFnl ‘ 𝑊 )
3 lkr0f2.k 𝐾 = ( LKer ‘ 𝑊 )
4 lkr0f2.d 𝐷 = ( LDual ‘ 𝑊 )
5 lkr0f2.o 0 = ( 0g𝐷 )
6 lkr0f2.w ( 𝜑𝑊 ∈ LMod )
7 lkr0f2.g ( 𝜑𝐺𝐹 )
8 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
9 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
10 8 9 1 2 3 lkr0f ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → ( ( 𝐾𝐺 ) = 𝑉𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )
11 6 7 10 syl2anc ( 𝜑 → ( ( 𝐾𝐺 ) = 𝑉𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )
12 1 8 9 4 5 6 ldual0v ( 𝜑0 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )
13 12 eqeq2d ( 𝜑 → ( 𝐺 = 0𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )
14 11 13 bitr4d ( 𝜑 → ( ( 𝐾𝐺 ) = 𝑉𝐺 = 0 ) )