Step |
Hyp |
Ref |
Expression |
1 |
|
lkr0f2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lkr0f2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
3 |
|
lkr0f2.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
4 |
|
lkr0f2.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
5 |
|
lkr0f2.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
6 |
|
lkr0f2.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
lkr0f2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
8 9 1 2 3
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
11 |
6 7 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
12 |
1 8 9 4 5 6
|
ldual0v |
⊢ ( 𝜑 → 0 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝜑 → ( 𝐺 = 0 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
14 |
11 13
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = 0 ) ) |