Metamath Proof Explorer


Theorem ldual0vs

Description: Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses ldual0vs.f
|- F = ( LFnl ` W )
ldual0vs.r
|- R = ( Scalar ` W )
ldual0vs.z
|- .0. = ( 0g ` R )
ldual0vs.d
|- D = ( LDual ` W )
ldual0vs.t
|- .x. = ( .s ` D )
ldual0vs.o
|- O = ( 0g ` D )
ldual0vs.w
|- ( ph -> W e. LMod )
ldual0vs.g
|- ( ph -> G e. F )
Assertion ldual0vs
|- ( ph -> ( .0. .x. G ) = O )

Proof

Step Hyp Ref Expression
1 ldual0vs.f
 |-  F = ( LFnl ` W )
2 ldual0vs.r
 |-  R = ( Scalar ` W )
3 ldual0vs.z
 |-  .0. = ( 0g ` R )
4 ldual0vs.d
 |-  D = ( LDual ` W )
5 ldual0vs.t
 |-  .x. = ( .s ` D )
6 ldual0vs.o
 |-  O = ( 0g ` D )
7 ldual0vs.w
 |-  ( ph -> W e. LMod )
8 ldual0vs.g
 |-  ( ph -> G e. F )
9 eqid
 |-  ( Scalar ` D ) = ( Scalar ` D )
10 eqid
 |-  ( 0g ` ( Scalar ` D ) ) = ( 0g ` ( Scalar ` D ) )
11 2 3 4 9 10 7 ldual0
 |-  ( ph -> ( 0g ` ( Scalar ` D ) ) = .0. )
12 11 oveq1d
 |-  ( ph -> ( ( 0g ` ( Scalar ` D ) ) .x. G ) = ( .0. .x. G ) )
13 4 7 lduallmod
 |-  ( ph -> D e. LMod )
14 eqid
 |-  ( Base ` D ) = ( Base ` D )
15 1 4 14 7 8 ldualelvbase
 |-  ( ph -> G e. ( Base ` D ) )
16 14 9 5 10 6 lmod0vs
 |-  ( ( D e. LMod /\ G e. ( Base ` D ) ) -> ( ( 0g ` ( Scalar ` D ) ) .x. G ) = O )
17 13 15 16 syl2anc
 |-  ( ph -> ( ( 0g ` ( Scalar ` D ) ) .x. G ) = O )
18 12 17 eqtr3d
 |-  ( ph -> ( .0. .x. G ) = O )