Metamath Proof Explorer


Theorem ldual0vs

Description: Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses ldual0vs.f 𝐹 = ( LFnl ‘ 𝑊 )
ldual0vs.r 𝑅 = ( Scalar ‘ 𝑊 )
ldual0vs.z 0 = ( 0g𝑅 )
ldual0vs.d 𝐷 = ( LDual ‘ 𝑊 )
ldual0vs.t · = ( ·𝑠𝐷 )
ldual0vs.o 𝑂 = ( 0g𝐷 )
ldual0vs.w ( 𝜑𝑊 ∈ LMod )
ldual0vs.g ( 𝜑𝐺𝐹 )
Assertion ldual0vs ( 𝜑 → ( 0 · 𝐺 ) = 𝑂 )

Proof

Step Hyp Ref Expression
1 ldual0vs.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldual0vs.r 𝑅 = ( Scalar ‘ 𝑊 )
3 ldual0vs.z 0 = ( 0g𝑅 )
4 ldual0vs.d 𝐷 = ( LDual ‘ 𝑊 )
5 ldual0vs.t · = ( ·𝑠𝐷 )
6 ldual0vs.o 𝑂 = ( 0g𝐷 )
7 ldual0vs.w ( 𝜑𝑊 ∈ LMod )
8 ldual0vs.g ( 𝜑𝐺𝐹 )
9 eqid ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 )
10 eqid ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝐷 ) )
11 2 3 4 9 10 7 ldual0 ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = 0 )
12 11 oveq1d ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0 · 𝐺 ) )
13 4 7 lduallmod ( 𝜑𝐷 ∈ LMod )
14 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
15 1 4 14 7 8 ldualelvbase ( 𝜑𝐺 ∈ ( Base ‘ 𝐷 ) )
16 14 9 5 10 6 lmod0vs ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = 𝑂 )
17 13 15 16 syl2anc ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = 𝑂 )
18 12 17 eqtr3d ( 𝜑 → ( 0 · 𝐺 ) = 𝑂 )