Step |
Hyp |
Ref |
Expression |
1 |
|
ldual0vs.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldual0vs.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
3 |
|
ldual0vs.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
ldual0vs.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
5 |
|
ldual0vs.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
6 |
|
ldual0vs.o |
⊢ 𝑂 = ( 0g ‘ 𝐷 ) |
7 |
|
ldual0vs.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
ldual0vs.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
10 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) |
11 |
2 3 4 9 10 7
|
ldual0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = 0 ) |
12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = ( 0 · 𝐺 ) ) |
13 |
4 7
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
15 |
1 4 14 7 8
|
ldualelvbase |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝐷 ) ) |
16 |
14 9 5 10 6
|
lmod0vs |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = 𝑂 ) |
17 |
13 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝐷 ) ) · 𝐺 ) = 𝑂 ) |
18 |
12 17
|
eqtr3d |
⊢ ( 𝜑 → ( 0 · 𝐺 ) = 𝑂 ) |