Description: Closure of vector subtraction in a dual subspace.) (Contributed by NM, 9-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualssvsubcl.d | |- D = ( LDual ` W ) |
|
ldualssvsubcl.m | |- .- = ( -g ` D ) |
||
ldualssvsubcl.s | |- S = ( LSubSp ` D ) |
||
ldualssvsubcl.w | |- ( ph -> W e. LMod ) |
||
ldualssvsubcl.u | |- ( ph -> U e. S ) |
||
ldualssvsubcl.x | |- ( ph -> X e. U ) |
||
ldualssvsubcl.y | |- ( ph -> Y e. U ) |
||
Assertion | ldualssvsubcl | |- ( ph -> ( X .- Y ) e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualssvsubcl.d | |- D = ( LDual ` W ) |
|
2 | ldualssvsubcl.m | |- .- = ( -g ` D ) |
|
3 | ldualssvsubcl.s | |- S = ( LSubSp ` D ) |
|
4 | ldualssvsubcl.w | |- ( ph -> W e. LMod ) |
|
5 | ldualssvsubcl.u | |- ( ph -> U e. S ) |
|
6 | ldualssvsubcl.x | |- ( ph -> X e. U ) |
|
7 | ldualssvsubcl.y | |- ( ph -> Y e. U ) |
|
8 | 1 4 | lduallmod | |- ( ph -> D e. LMod ) |
9 | 2 3 | lssvsubcl | |- ( ( ( D e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X .- Y ) e. U ) |
10 | 8 5 6 7 9 | syl22anc | |- ( ph -> ( X .- Y ) e. U ) |