Step |
Hyp |
Ref |
Expression |
1 |
|
ldualssvscl.r |
|- R = ( Scalar ` W ) |
2 |
|
ldualssvscl.k |
|- K = ( Base ` R ) |
3 |
|
ldualssvscl.d |
|- D = ( LDual ` W ) |
4 |
|
ldualssvscl.t |
|- .x. = ( .s ` D ) |
5 |
|
ldualssvscl.s |
|- S = ( LSubSp ` D ) |
6 |
|
ldualssvscl.w |
|- ( ph -> W e. LMod ) |
7 |
|
ldualssvscl.u |
|- ( ph -> U e. S ) |
8 |
|
ldualssvscl.x |
|- ( ph -> X e. K ) |
9 |
|
ldualssvscl.y |
|- ( ph -> Y e. U ) |
10 |
3 6
|
lduallmod |
|- ( ph -> D e. LMod ) |
11 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
12 |
|
eqid |
|- ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) |
13 |
1 2 3 11 12 6
|
ldualsbase |
|- ( ph -> ( Base ` ( Scalar ` D ) ) = K ) |
14 |
8 13
|
eleqtrrd |
|- ( ph -> X e. ( Base ` ( Scalar ` D ) ) ) |
15 |
11 4 12 5
|
lssvscl |
|- ( ( ( D e. LMod /\ U e. S ) /\ ( X e. ( Base ` ( Scalar ` D ) ) /\ Y e. U ) ) -> ( X .x. Y ) e. U ) |
16 |
10 7 14 9 15
|
syl22anc |
|- ( ph -> ( X .x. Y ) e. U ) |