Step |
Hyp |
Ref |
Expression |
1 |
|
ldualssvscl.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
2 |
|
ldualssvscl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
ldualssvscl.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
4 |
|
ldualssvscl.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
5 |
|
ldualssvscl.s |
⊢ 𝑆 = ( LSubSp ‘ 𝐷 ) |
6 |
|
ldualssvscl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
ldualssvscl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
8 |
|
ldualssvscl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
9 |
|
ldualssvscl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
10 |
3 6
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) ) |
13 |
1 2 3 11 12 6
|
ldualsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = 𝐾 ) |
14 |
8 13
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ) |
15 |
11 4 12 5
|
lssvscl |
⊢ ( ( ( 𝐷 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |
16 |
10 7 14 9 15
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |