Metamath Proof Explorer


Theorem ldualssvscl

Description: Closure of scalar product in a dual subspace.) (Contributed by NM, 5-Feb-2015)

Ref Expression
Hypotheses ldualssvscl.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualssvscl.k 𝐾 = ( Base ‘ 𝑅 )
ldualssvscl.d 𝐷 = ( LDual ‘ 𝑊 )
ldualssvscl.t · = ( ·𝑠𝐷 )
ldualssvscl.s 𝑆 = ( LSubSp ‘ 𝐷 )
ldualssvscl.w ( 𝜑𝑊 ∈ LMod )
ldualssvscl.u ( 𝜑𝑈𝑆 )
ldualssvscl.x ( 𝜑𝑋𝐾 )
ldualssvscl.y ( 𝜑𝑌𝑈 )
Assertion ldualssvscl ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 ldualssvscl.r 𝑅 = ( Scalar ‘ 𝑊 )
2 ldualssvscl.k 𝐾 = ( Base ‘ 𝑅 )
3 ldualssvscl.d 𝐷 = ( LDual ‘ 𝑊 )
4 ldualssvscl.t · = ( ·𝑠𝐷 )
5 ldualssvscl.s 𝑆 = ( LSubSp ‘ 𝐷 )
6 ldualssvscl.w ( 𝜑𝑊 ∈ LMod )
7 ldualssvscl.u ( 𝜑𝑈𝑆 )
8 ldualssvscl.x ( 𝜑𝑋𝐾 )
9 ldualssvscl.y ( 𝜑𝑌𝑈 )
10 3 6 lduallmod ( 𝜑𝐷 ∈ LMod )
11 eqid ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 )
12 eqid ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) )
13 1 2 3 11 12 6 ldualsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = 𝐾 )
14 8 13 eleqtrrd ( 𝜑𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) )
15 11 4 12 5 lssvscl ( ( ( 𝐷 ∈ LMod ∧ 𝑈𝑆 ) ∧ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑌𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 )
16 10 7 14 9 15 syl22anc ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑈 )