| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldualvsubval.v |
|- V = ( Base ` W ) |
| 2 |
|
ldualvsubval.r |
|- R = ( Scalar ` W ) |
| 3 |
|
ldualvsubval.s |
|- S = ( -g ` R ) |
| 4 |
|
ldualvsubval.f |
|- F = ( LFnl ` W ) |
| 5 |
|
ldualvsubval.d |
|- D = ( LDual ` W ) |
| 6 |
|
ldualvsubval.m |
|- .- = ( -g ` D ) |
| 7 |
|
ldualvsubval.w |
|- ( ph -> W e. LMod ) |
| 8 |
|
ldualvsubval.g |
|- ( ph -> G e. F ) |
| 9 |
|
ldualvsubval.h |
|- ( ph -> H e. F ) |
| 10 |
|
ldualvsubval.x |
|- ( ph -> X e. V ) |
| 11 |
5 7
|
lduallmod |
|- ( ph -> D e. LMod ) |
| 12 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 13 |
4 5 12 7 8
|
ldualelvbase |
|- ( ph -> G e. ( Base ` D ) ) |
| 14 |
4 5 12 7 9
|
ldualelvbase |
|- ( ph -> H e. ( Base ` D ) ) |
| 15 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
| 16 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
| 17 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
| 18 |
|
eqid |
|- ( invg ` ( Scalar ` D ) ) = ( invg ` ( Scalar ` D ) ) |
| 19 |
|
eqid |
|- ( 1r ` ( Scalar ` D ) ) = ( 1r ` ( Scalar ` D ) ) |
| 20 |
12 15 6 16 17 18 19
|
lmodvsubval2 |
|- ( ( D e. LMod /\ G e. ( Base ` D ) /\ H e. ( Base ` D ) ) -> ( G .- H ) = ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ) ) |
| 21 |
11 13 14 20
|
syl3anc |
|- ( ph -> ( G .- H ) = ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ) ) |
| 22 |
21
|
fveq1d |
|- ( ph -> ( ( G .- H ) ` X ) = ( ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ) ` X ) ) |
| 23 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 24 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 25 |
16
|
lmodfgrp |
|- ( D e. LMod -> ( Scalar ` D ) e. Grp ) |
| 26 |
11 25
|
syl |
|- ( ph -> ( Scalar ` D ) e. Grp ) |
| 27 |
16
|
lmodring |
|- ( D e. LMod -> ( Scalar ` D ) e. Ring ) |
| 28 |
11 27
|
syl |
|- ( ph -> ( Scalar ` D ) e. Ring ) |
| 29 |
|
eqid |
|- ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) |
| 30 |
29 19
|
ringidcl |
|- ( ( Scalar ` D ) e. Ring -> ( 1r ` ( Scalar ` D ) ) e. ( Base ` ( Scalar ` D ) ) ) |
| 31 |
28 30
|
syl |
|- ( ph -> ( 1r ` ( Scalar ` D ) ) e. ( Base ` ( Scalar ` D ) ) ) |
| 32 |
29 18
|
grpinvcl |
|- ( ( ( Scalar ` D ) e. Grp /\ ( 1r ` ( Scalar ` D ) ) e. ( Base ` ( Scalar ` D ) ) ) -> ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) e. ( Base ` ( Scalar ` D ) ) ) |
| 33 |
26 31 32
|
syl2anc |
|- ( ph -> ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) e. ( Base ` ( Scalar ` D ) ) ) |
| 34 |
2 24 5 16 29 7
|
ldualsbase |
|- ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` R ) ) |
| 35 |
33 34
|
eleqtrd |
|- ( ph -> ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) e. ( Base ` R ) ) |
| 36 |
4 2 24 5 17 7 35 9
|
ldualvscl |
|- ( ph -> ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) e. F ) |
| 37 |
1 2 23 4 5 15 7 8 36 10
|
ldualvaddval |
|- ( ph -> ( ( G ( +g ` D ) ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ) ` X ) = ( ( G ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ` X ) ) ) |
| 38 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 39 |
2 38 5 16 18 7
|
ldualneg |
|- ( ph -> ( invg ` ( Scalar ` D ) ) = ( invg ` R ) ) |
| 40 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 41 |
2 40 5 16 19 7
|
ldual1 |
|- ( ph -> ( 1r ` ( Scalar ` D ) ) = ( 1r ` R ) ) |
| 42 |
39 41
|
fveq12d |
|- ( ph -> ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ph -> ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) = ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` D ) H ) ) |
| 44 |
43
|
fveq1d |
|- ( ph -> ( ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ` X ) = ( ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` D ) H ) ` X ) ) |
| 45 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 46 |
2
|
lmodring |
|- ( W e. LMod -> R e. Ring ) |
| 47 |
7 46
|
syl |
|- ( ph -> R e. Ring ) |
| 48 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 49 |
47 48
|
syl |
|- ( ph -> R e. Grp ) |
| 50 |
2 24 40
|
lmod1cl |
|- ( W e. LMod -> ( 1r ` R ) e. ( Base ` R ) ) |
| 51 |
7 50
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 52 |
24 38
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) |
| 53 |
49 51 52
|
syl2anc |
|- ( ph -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) |
| 54 |
4 1 2 24 45 5 17 7 53 9 10
|
ldualvsval |
|- ( ph -> ( ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` D ) H ) ` X ) = ( ( H ` X ) ( .r ` R ) ( ( invg ` R ) ` ( 1r ` R ) ) ) ) |
| 55 |
2 24 1 4
|
lflcl |
|- ( ( W e. LMod /\ H e. F /\ X e. V ) -> ( H ` X ) e. ( Base ` R ) ) |
| 56 |
7 9 10 55
|
syl3anc |
|- ( ph -> ( H ` X ) e. ( Base ` R ) ) |
| 57 |
24 45 40 38 47 56
|
ringnegr |
|- ( ph -> ( ( H ` X ) ( .r ` R ) ( ( invg ` R ) ` ( 1r ` R ) ) ) = ( ( invg ` R ) ` ( H ` X ) ) ) |
| 58 |
44 54 57
|
3eqtrd |
|- ( ph -> ( ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ` X ) = ( ( invg ` R ) ` ( H ` X ) ) ) |
| 59 |
58
|
oveq2d |
|- ( ph -> ( ( G ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ` X ) ) = ( ( G ` X ) ( +g ` R ) ( ( invg ` R ) ` ( H ` X ) ) ) ) |
| 60 |
2 24 1 4
|
lflcl |
|- ( ( W e. LMod /\ G e. F /\ X e. V ) -> ( G ` X ) e. ( Base ` R ) ) |
| 61 |
7 8 10 60
|
syl3anc |
|- ( ph -> ( G ` X ) e. ( Base ` R ) ) |
| 62 |
24 23 38 3
|
grpsubval |
|- ( ( ( G ` X ) e. ( Base ` R ) /\ ( H ` X ) e. ( Base ` R ) ) -> ( ( G ` X ) S ( H ` X ) ) = ( ( G ` X ) ( +g ` R ) ( ( invg ` R ) ` ( H ` X ) ) ) ) |
| 63 |
61 56 62
|
syl2anc |
|- ( ph -> ( ( G ` X ) S ( H ` X ) ) = ( ( G ` X ) ( +g ` R ) ( ( invg ` R ) ` ( H ` X ) ) ) ) |
| 64 |
59 63
|
eqtr4d |
|- ( ph -> ( ( G ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` D ) ) ` ( 1r ` ( Scalar ` D ) ) ) ( .s ` D ) H ) ` X ) ) = ( ( G ` X ) S ( H ` X ) ) ) |
| 65 |
22 37 64
|
3eqtrd |
|- ( ph -> ( ( G .- H ) ` X ) = ( ( G ` X ) S ( H ` X ) ) ) |