Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldualneg.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | |
| ldualneg.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | ||
| ldualneg.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | ||
| ldualneg.s | ⊢ 𝑆 = ( Scalar ‘ 𝐷 ) | ||
| ldualneg.n | ⊢ 𝑁 = ( invg ‘ 𝑆 ) | ||
| ldualneg.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| Assertion | ldualneg | ⊢ ( 𝜑 → 𝑁 = 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualneg.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | |
| 2 | ldualneg.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | |
| 3 | ldualneg.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | |
| 4 | ldualneg.s | ⊢ 𝑆 = ( Scalar ‘ 𝐷 ) | |
| 5 | ldualneg.n | ⊢ 𝑁 = ( invg ‘ 𝑆 ) | |
| 6 | ldualneg.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 7 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 8 | 1 7 3 4 6 | ldualsca | ⊢ ( 𝜑 → 𝑆 = ( oppr ‘ 𝑅 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝜑 → ( invg ‘ 𝑆 ) = ( invg ‘ ( oppr ‘ 𝑅 ) ) ) |
| 10 | 7 2 | opprneg | ⊢ 𝑀 = ( invg ‘ ( oppr ‘ 𝑅 ) ) |
| 11 | 9 5 10 | 3eqtr4g | ⊢ ( 𝜑 → 𝑁 = 𝑀 ) |