Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualneg.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | |
ldualneg.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | ||
ldualneg.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | ||
ldualneg.s | ⊢ 𝑆 = ( Scalar ‘ 𝐷 ) | ||
ldualneg.n | ⊢ 𝑁 = ( invg ‘ 𝑆 ) | ||
ldualneg.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
Assertion | ldualneg | ⊢ ( 𝜑 → 𝑁 = 𝑀 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualneg.r | ⊢ 𝑅 = ( Scalar ‘ 𝑊 ) | |
2 | ldualneg.m | ⊢ 𝑀 = ( invg ‘ 𝑅 ) | |
3 | ldualneg.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | |
4 | ldualneg.s | ⊢ 𝑆 = ( Scalar ‘ 𝐷 ) | |
5 | ldualneg.n | ⊢ 𝑁 = ( invg ‘ 𝑆 ) | |
6 | ldualneg.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
7 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
8 | 1 7 3 4 6 | ldualsca | ⊢ ( 𝜑 → 𝑆 = ( oppr ‘ 𝑅 ) ) |
9 | 8 | fveq2d | ⊢ ( 𝜑 → ( invg ‘ 𝑆 ) = ( invg ‘ ( oppr ‘ 𝑅 ) ) ) |
10 | 7 2 | opprneg | ⊢ 𝑀 = ( invg ‘ ( oppr ‘ 𝑅 ) ) |
11 | 9 5 10 | 3eqtr4g | ⊢ ( 𝜑 → 𝑁 = 𝑀 ) |