Metamath Proof Explorer


Theorem ldualneg

Description: The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldualneg.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualneg.m 𝑀 = ( invg𝑅 )
ldualneg.d 𝐷 = ( LDual ‘ 𝑊 )
ldualneg.s 𝑆 = ( Scalar ‘ 𝐷 )
ldualneg.n 𝑁 = ( invg𝑆 )
ldualneg.w ( 𝜑𝑊 ∈ LMod )
Assertion ldualneg ( 𝜑𝑁 = 𝑀 )

Proof

Step Hyp Ref Expression
1 ldualneg.r 𝑅 = ( Scalar ‘ 𝑊 )
2 ldualneg.m 𝑀 = ( invg𝑅 )
3 ldualneg.d 𝐷 = ( LDual ‘ 𝑊 )
4 ldualneg.s 𝑆 = ( Scalar ‘ 𝐷 )
5 ldualneg.n 𝑁 = ( invg𝑆 )
6 ldualneg.w ( 𝜑𝑊 ∈ LMod )
7 eqid ( oppr𝑅 ) = ( oppr𝑅 )
8 1 7 3 4 6 ldualsca ( 𝜑𝑆 = ( oppr𝑅 ) )
9 8 fveq2d ( 𝜑 → ( invg𝑆 ) = ( invg ‘ ( oppr𝑅 ) ) )
10 7 2 opprneg 𝑀 = ( invg ‘ ( oppr𝑅 ) )
11 9 5 10 3eqtr4g ( 𝜑𝑁 = 𝑀 )