Metamath Proof Explorer


Theorem ldual1

Description: The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldual1.r 𝑅 = ( Scalar ‘ 𝑊 )
ldual1.u 1 = ( 1r𝑅 )
ldual1.d 𝐷 = ( LDual ‘ 𝑊 )
ldual1.s 𝑆 = ( Scalar ‘ 𝐷 )
ldual1.i 𝐼 = ( 1r𝑆 )
ldual1.w ( 𝜑𝑊 ∈ LMod )
Assertion ldual1 ( 𝜑𝐼 = 1 )

Proof

Step Hyp Ref Expression
1 ldual1.r 𝑅 = ( Scalar ‘ 𝑊 )
2 ldual1.u 1 = ( 1r𝑅 )
3 ldual1.d 𝐷 = ( LDual ‘ 𝑊 )
4 ldual1.s 𝑆 = ( Scalar ‘ 𝐷 )
5 ldual1.i 𝐼 = ( 1r𝑆 )
6 ldual1.w ( 𝜑𝑊 ∈ LMod )
7 eqid ( oppr𝑅 ) = ( oppr𝑅 )
8 1 7 3 4 6 ldualsca ( 𝜑𝑆 = ( oppr𝑅 ) )
9 8 fveq2d ( 𝜑 → ( 1r𝑆 ) = ( 1r ‘ ( oppr𝑅 ) ) )
10 7 2 oppr1 1 = ( 1r ‘ ( oppr𝑅 ) )
11 9 5 10 3eqtr4g ( 𝜑𝐼 = 1 )