Step |
Hyp |
Ref |
Expression |
1 |
|
lflnegcl.v |
|
2 |
|
lflnegcl.r |
|
3 |
|
lflnegcl.i |
|
4 |
|
lflnegcl.n |
|
5 |
|
lflnegcl.f |
|
6 |
|
lflnegcl.w |
|
7 |
|
lflnegcl.g |
|
8 |
2
|
lmodring |
|
9 |
6 8
|
syl |
|
10 |
|
ringgrp |
|
11 |
9 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
6
|
adantr |
|
14 |
7
|
adantr |
|
15 |
|
simpr |
|
16 |
|
eqid |
|
17 |
2 16 1 5
|
lflcl |
|
18 |
13 14 15 17
|
syl3anc |
|
19 |
16 3
|
grpinvcl |
|
20 |
12 18 19
|
syl2anc |
|
21 |
20 4
|
fmptd |
|
22 |
|
ringabl |
|
23 |
9 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
9
|
adantr |
|
26 |
|
simpr1 |
|
27 |
6
|
adantr |
|
28 |
7
|
adantr |
|
29 |
|
simpr2 |
|
30 |
2 16 1 5
|
lflcl |
|
31 |
27 28 29 30
|
syl3anc |
|
32 |
|
eqid |
|
33 |
16 32
|
ringcl |
|
34 |
25 26 31 33
|
syl3anc |
|
35 |
|
simpr3 |
|
36 |
2 16 1 5
|
lflcl |
|
37 |
27 28 35 36
|
syl3anc |
|
38 |
|
eqid |
|
39 |
16 38 3
|
ablinvadd |
|
40 |
24 34 37 39
|
syl3anc |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
1 41 2 42 16 38 32 5
|
lfli |
|
44 |
27 28 26 29 35 43
|
syl113anc |
|
45 |
44
|
fveq2d |
|
46 |
16 32 3 25 26 31
|
ringmneg2 |
|
47 |
46
|
oveq1d |
|
48 |
40 45 47
|
3eqtr4d |
|
49 |
1 2 42 16
|
lmodvscl |
|
50 |
27 26 29 49
|
syl3anc |
|
51 |
1 41
|
lmodvacl |
|
52 |
27 50 35 51
|
syl3anc |
|
53 |
|
2fveq3 |
|
54 |
|
fvex |
|
55 |
53 4 54
|
fvmpt |
|
56 |
52 55
|
syl |
|
57 |
|
2fveq3 |
|
58 |
|
fvex |
|
59 |
57 4 58
|
fvmpt |
|
60 |
29 59
|
syl |
|
61 |
60
|
oveq2d |
|
62 |
|
2fveq3 |
|
63 |
|
fvex |
|
64 |
62 4 63
|
fvmpt |
|
65 |
35 64
|
syl |
|
66 |
61 65
|
oveq12d |
|
67 |
48 56 66
|
3eqtr4d |
|
68 |
67
|
ralrimivvva |
|
69 |
1 41 2 42 16 38 32 5
|
islfl |
|
70 |
6 69
|
syl |
|
71 |
21 68 70
|
mpbir2and |
|