| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflnegcl.v |
|
| 2 |
|
lflnegcl.r |
|
| 3 |
|
lflnegcl.i |
|
| 4 |
|
lflnegcl.n |
|
| 5 |
|
lflnegcl.f |
|
| 6 |
|
lflnegcl.w |
|
| 7 |
|
lflnegcl.g |
|
| 8 |
2
|
lmodring |
|
| 9 |
6 8
|
syl |
|
| 10 |
|
ringgrp |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
adantr |
|
| 13 |
6
|
adantr |
|
| 14 |
7
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
|
eqid |
|
| 17 |
2 16 1 5
|
lflcl |
|
| 18 |
13 14 15 17
|
syl3anc |
|
| 19 |
16 3
|
grpinvcl |
|
| 20 |
12 18 19
|
syl2anc |
|
| 21 |
20 4
|
fmptd |
|
| 22 |
|
ringabl |
|
| 23 |
9 22
|
syl |
|
| 24 |
23
|
adantr |
|
| 25 |
9
|
adantr |
|
| 26 |
|
simpr1 |
|
| 27 |
6
|
adantr |
|
| 28 |
7
|
adantr |
|
| 29 |
|
simpr2 |
|
| 30 |
2 16 1 5
|
lflcl |
|
| 31 |
27 28 29 30
|
syl3anc |
|
| 32 |
|
eqid |
|
| 33 |
16 32
|
ringcl |
|
| 34 |
25 26 31 33
|
syl3anc |
|
| 35 |
|
simpr3 |
|
| 36 |
2 16 1 5
|
lflcl |
|
| 37 |
27 28 35 36
|
syl3anc |
|
| 38 |
|
eqid |
|
| 39 |
16 38 3
|
ablinvadd |
|
| 40 |
24 34 37 39
|
syl3anc |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
1 41 2 42 16 38 32 5
|
lfli |
|
| 44 |
27 28 26 29 35 43
|
syl113anc |
|
| 45 |
44
|
fveq2d |
|
| 46 |
16 32 3 25 26 31
|
ringmneg2 |
|
| 47 |
46
|
oveq1d |
|
| 48 |
40 45 47
|
3eqtr4d |
|
| 49 |
1 2 42 16
|
lmodvscl |
|
| 50 |
27 26 29 49
|
syl3anc |
|
| 51 |
1 41
|
lmodvacl |
|
| 52 |
27 50 35 51
|
syl3anc |
|
| 53 |
|
2fveq3 |
|
| 54 |
|
fvex |
|
| 55 |
53 4 54
|
fvmpt |
|
| 56 |
52 55
|
syl |
|
| 57 |
|
2fveq3 |
|
| 58 |
|
fvex |
|
| 59 |
57 4 58
|
fvmpt |
|
| 60 |
29 59
|
syl |
|
| 61 |
60
|
oveq2d |
|
| 62 |
|
2fveq3 |
|
| 63 |
|
fvex |
|
| 64 |
62 4 63
|
fvmpt |
|
| 65 |
35 64
|
syl |
|
| 66 |
61 65
|
oveq12d |
|
| 67 |
48 56 66
|
3eqtr4d |
|
| 68 |
67
|
ralrimivvva |
|
| 69 |
1 41 2 42 16 38 32 5
|
islfl |
|
| 70 |
6 69
|
syl |
|
| 71 |
21 68 70
|
mpbir2and |
|