Metamath Proof Explorer


Theorem lfladdass

Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses lfladdcl.r R=ScalarW
lfladdcl.p +˙=+R
lfladdcl.f F=LFnlW
lfladdcl.w φWLMod
lfladdcl.g φGF
lfladdcl.h φHF
lfladdass.i φIF
Assertion lfladdass φG+˙fH+˙fI=G+˙fH+˙fI

Proof

Step Hyp Ref Expression
1 lfladdcl.r R=ScalarW
2 lfladdcl.p +˙=+R
3 lfladdcl.f F=LFnlW
4 lfladdcl.w φWLMod
5 lfladdcl.g φGF
6 lfladdcl.h φHF
7 lfladdass.i φIF
8 fvexd φBaseWV
9 eqid BaseR=BaseR
10 eqid BaseW=BaseW
11 1 9 10 3 lflf WLModGFG:BaseWBaseR
12 4 5 11 syl2anc φG:BaseWBaseR
13 1 9 10 3 lflf WLModHFH:BaseWBaseR
14 4 6 13 syl2anc φH:BaseWBaseR
15 1 9 10 3 lflf WLModIFI:BaseWBaseR
16 4 7 15 syl2anc φI:BaseWBaseR
17 1 lmodring WLModRRing
18 ringgrp RRingRGrp
19 4 17 18 3syl φRGrp
20 9 2 grpass RGrpxBaseRyBaseRzBaseRx+˙y+˙z=x+˙y+˙z
21 19 20 sylan φxBaseRyBaseRzBaseRx+˙y+˙z=x+˙y+˙z
22 8 12 14 16 21 caofass φG+˙fH+˙fI=G+˙fH+˙fI