Metamath Proof Explorer


Theorem caofass

Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofcom.3 φ G : A S
caofass.4 φ H : A S
caofass.5 φ x S y S z S x R y T z = x O y P z
Assertion caofass φ F R f G T f H = F O f G P f H

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofcom.3 φ G : A S
4 caofass.4 φ H : A S
5 caofass.5 φ x S y S z S x R y T z = x O y P z
6 5 ralrimivvva φ x S y S z S x R y T z = x O y P z
7 6 adantr φ w A x S y S z S x R y T z = x O y P z
8 2 ffvelrnda φ w A F w S
9 3 ffvelrnda φ w A G w S
10 4 ffvelrnda φ w A H w S
11 oveq1 x = F w x R y = F w R y
12 11 oveq1d x = F w x R y T z = F w R y T z
13 oveq1 x = F w x O y P z = F w O y P z
14 12 13 eqeq12d x = F w x R y T z = x O y P z F w R y T z = F w O y P z
15 oveq2 y = G w F w R y = F w R G w
16 15 oveq1d y = G w F w R y T z = F w R G w T z
17 oveq1 y = G w y P z = G w P z
18 17 oveq2d y = G w F w O y P z = F w O G w P z
19 16 18 eqeq12d y = G w F w R y T z = F w O y P z F w R G w T z = F w O G w P z
20 oveq2 z = H w F w R G w T z = F w R G w T H w
21 oveq2 z = H w G w P z = G w P H w
22 21 oveq2d z = H w F w O G w P z = F w O G w P H w
23 20 22 eqeq12d z = H w F w R G w T z = F w O G w P z F w R G w T H w = F w O G w P H w
24 14 19 23 rspc3v F w S G w S H w S x S y S z S x R y T z = x O y P z F w R G w T H w = F w O G w P H w
25 8 9 10 24 syl3anc φ w A x S y S z S x R y T z = x O y P z F w R G w T H w = F w O G w P H w
26 7 25 mpd φ w A F w R G w T H w = F w O G w P H w
27 26 mpteq2dva φ w A F w R G w T H w = w A F w O G w P H w
28 ovexd φ w A F w R G w V
29 2 feqmptd φ F = w A F w
30 3 feqmptd φ G = w A G w
31 1 8 9 29 30 offval2 φ F R f G = w A F w R G w
32 4 feqmptd φ H = w A H w
33 1 28 10 31 32 offval2 φ F R f G T f H = w A F w R G w T H w
34 ovexd φ w A G w P H w V
35 1 9 10 30 32 offval2 φ G P f H = w A G w P H w
36 1 8 34 29 35 offval2 φ F O f G P f H = w A F w O G w P H w
37 27 33 36 3eqtr4d φ F R f G T f H = F O f G P f H