Step |
Hyp |
Ref |
Expression |
1 |
|
caofref.1 |
|
2 |
|
caofref.2 |
|
3 |
|
caofcom.3 |
|
4 |
|
caofass.4 |
|
5 |
|
caofass.5 |
|
6 |
5
|
ralrimivvva |
|
7 |
6
|
adantr |
|
8 |
2
|
ffvelrnda |
|
9 |
3
|
ffvelrnda |
|
10 |
4
|
ffvelrnda |
|
11 |
|
oveq1 |
|
12 |
11
|
oveq1d |
|
13 |
|
oveq1 |
|
14 |
12 13
|
eqeq12d |
|
15 |
|
oveq2 |
|
16 |
15
|
oveq1d |
|
17 |
|
oveq1 |
|
18 |
17
|
oveq2d |
|
19 |
16 18
|
eqeq12d |
|
20 |
|
oveq2 |
|
21 |
|
oveq2 |
|
22 |
21
|
oveq2d |
|
23 |
20 22
|
eqeq12d |
|
24 |
14 19 23
|
rspc3v |
|
25 |
8 9 10 24
|
syl3anc |
|
26 |
7 25
|
mpd |
|
27 |
26
|
mpteq2dva |
|
28 |
|
ovexd |
|
29 |
2
|
feqmptd |
|
30 |
3
|
feqmptd |
|
31 |
1 8 9 29 30
|
offval2 |
|
32 |
4
|
feqmptd |
|
33 |
1 28 10 31 32
|
offval2 |
|
34 |
|
ovexd |
|
35 |
1 9 10 30 32
|
offval2 |
|
36 |
1 8 34 29 35
|
offval2 |
|
37 |
27 33 36
|
3eqtr4d |
|