Metamath Proof Explorer


Theorem caofass

Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofcom.3 φG:AS
caofass.4 φH:AS
caofass.5 φxSySzSxRyTz=xOyPz
Assertion caofass φFRfGTfH=FOfGPfH

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofcom.3 φG:AS
4 caofass.4 φH:AS
5 caofass.5 φxSySzSxRyTz=xOyPz
6 5 ralrimivvva φxSySzSxRyTz=xOyPz
7 6 adantr φwAxSySzSxRyTz=xOyPz
8 2 ffvelcdmda φwAFwS
9 3 ffvelcdmda φwAGwS
10 4 ffvelcdmda φwAHwS
11 oveq1 x=FwxRy=FwRy
12 11 oveq1d x=FwxRyTz=FwRyTz
13 oveq1 x=FwxOyPz=FwOyPz
14 12 13 eqeq12d x=FwxRyTz=xOyPzFwRyTz=FwOyPz
15 oveq2 y=GwFwRy=FwRGw
16 15 oveq1d y=GwFwRyTz=FwRGwTz
17 oveq1 y=GwyPz=GwPz
18 17 oveq2d y=GwFwOyPz=FwOGwPz
19 16 18 eqeq12d y=GwFwRyTz=FwOyPzFwRGwTz=FwOGwPz
20 oveq2 z=HwFwRGwTz=FwRGwTHw
21 oveq2 z=HwGwPz=GwPHw
22 21 oveq2d z=HwFwOGwPz=FwOGwPHw
23 20 22 eqeq12d z=HwFwRGwTz=FwOGwPzFwRGwTHw=FwOGwPHw
24 14 19 23 rspc3v FwSGwSHwSxSySzSxRyTz=xOyPzFwRGwTHw=FwOGwPHw
25 8 9 10 24 syl3anc φwAxSySzSxRyTz=xOyPzFwRGwTHw=FwOGwPHw
26 7 25 mpd φwAFwRGwTHw=FwOGwPHw
27 26 mpteq2dva φwAFwRGwTHw=wAFwOGwPHw
28 ovexd φwAFwRGwV
29 2 feqmptd φF=wAFw
30 3 feqmptd φG=wAGw
31 1 8 9 29 30 offval2 φFRfG=wAFwRGw
32 4 feqmptd φH=wAHw
33 1 28 10 31 32 offval2 φFRfGTfH=wAFwRGwTHw
34 ovexd φwAGwPHwV
35 1 9 10 30 32 offval2 φGPfH=wAGwPHw
36 1 8 34 29 35 offval2 φFOfGPfH=wAFwOGwPHw
37 27 33 36 3eqtr4d φFRfGTfH=FOfGPfH