Step |
Hyp |
Ref |
Expression |
1 |
|
caofref.1 |
|- ( ph -> A e. V ) |
2 |
|
caofref.2 |
|- ( ph -> F : A --> S ) |
3 |
|
caofcom.3 |
|- ( ph -> G : A --> S ) |
4 |
|
caofass.4 |
|- ( ph -> H : A --> S ) |
5 |
|
caofass.5 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x R y ) T z ) = ( x O ( y P z ) ) ) |
6 |
5
|
ralrimivvva |
|- ( ph -> A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) ) |
7 |
6
|
adantr |
|- ( ( ph /\ w e. A ) -> A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) ) |
8 |
2
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
9 |
3
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
10 |
4
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
11 |
|
oveq1 |
|- ( x = ( F ` w ) -> ( x R y ) = ( ( F ` w ) R y ) ) |
12 |
11
|
oveq1d |
|- ( x = ( F ` w ) -> ( ( x R y ) T z ) = ( ( ( F ` w ) R y ) T z ) ) |
13 |
|
oveq1 |
|- ( x = ( F ` w ) -> ( x O ( y P z ) ) = ( ( F ` w ) O ( y P z ) ) ) |
14 |
12 13
|
eqeq12d |
|- ( x = ( F ` w ) -> ( ( ( x R y ) T z ) = ( x O ( y P z ) ) <-> ( ( ( F ` w ) R y ) T z ) = ( ( F ` w ) O ( y P z ) ) ) ) |
15 |
|
oveq2 |
|- ( y = ( G ` w ) -> ( ( F ` w ) R y ) = ( ( F ` w ) R ( G ` w ) ) ) |
16 |
15
|
oveq1d |
|- ( y = ( G ` w ) -> ( ( ( F ` w ) R y ) T z ) = ( ( ( F ` w ) R ( G ` w ) ) T z ) ) |
17 |
|
oveq1 |
|- ( y = ( G ` w ) -> ( y P z ) = ( ( G ` w ) P z ) ) |
18 |
17
|
oveq2d |
|- ( y = ( G ` w ) -> ( ( F ` w ) O ( y P z ) ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) ) |
19 |
16 18
|
eqeq12d |
|- ( y = ( G ` w ) -> ( ( ( ( F ` w ) R y ) T z ) = ( ( F ` w ) O ( y P z ) ) <-> ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) ) ) |
20 |
|
oveq2 |
|- ( z = ( H ` w ) -> ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) |
21 |
|
oveq2 |
|- ( z = ( H ` w ) -> ( ( G ` w ) P z ) = ( ( G ` w ) P ( H ` w ) ) ) |
22 |
21
|
oveq2d |
|- ( z = ( H ` w ) -> ( ( F ` w ) O ( ( G ` w ) P z ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) |
23 |
20 22
|
eqeq12d |
|- ( z = ( H ` w ) -> ( ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) <-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
24 |
14 19 23
|
rspc3v |
|- ( ( ( F ` w ) e. S /\ ( G ` w ) e. S /\ ( H ` w ) e. S ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
25 |
8 9 10 24
|
syl3anc |
|- ( ( ph /\ w e. A ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
26 |
7 25
|
mpd |
|- ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) |
27 |
26
|
mpteq2dva |
|- ( ph -> ( w e. A |-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) = ( w e. A |-> ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
28 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( F ` w ) R ( G ` w ) ) e. _V ) |
29 |
2
|
feqmptd |
|- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
30 |
3
|
feqmptd |
|- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
31 |
1 8 9 29 30
|
offval2 |
|- ( ph -> ( F oF R G ) = ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) ) |
32 |
4
|
feqmptd |
|- ( ph -> H = ( w e. A |-> ( H ` w ) ) ) |
33 |
1 28 10 31 32
|
offval2 |
|- ( ph -> ( ( F oF R G ) oF T H ) = ( w e. A |-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) ) |
34 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) P ( H ` w ) ) e. _V ) |
35 |
1 9 10 30 32
|
offval2 |
|- ( ph -> ( G oF P H ) = ( w e. A |-> ( ( G ` w ) P ( H ` w ) ) ) ) |
36 |
1 8 34 29 35
|
offval2 |
|- ( ph -> ( F oF O ( G oF P H ) ) = ( w e. A |-> ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
37 |
27 33 36
|
3eqtr4d |
|- ( ph -> ( ( F oF R G ) oF T H ) = ( F oF O ( G oF P H ) ) ) |