Step |
Hyp |
Ref |
Expression |
1 |
|
caofref.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
caofref.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
3 |
|
caofcom.3 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) |
4 |
|
caofass.4 |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) |
5 |
|
caofass.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
6 |
5
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
8 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
9 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
10 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( 𝑦 𝑃 𝑧 ) = ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) = ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
24 |
14 19 23
|
rspc3v |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
25 |
8 9 10 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
26 |
7 25
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
27 |
26
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
28 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ∈ V ) |
29 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
30 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
31 |
1 8 9 29 30
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) ) |
32 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑤 ) ) ) |
33 |
1 28 10 31 32
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘f 𝑇 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
34 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ∈ V ) |
35 |
1 9 10 30 32
|
offval2 |
⊢ ( 𝜑 → ( 𝐺 ∘f 𝑃 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
36 |
1 8 34 29 35
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑂 ( 𝐺 ∘f 𝑃 𝐻 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
37 |
27 33 36
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘f 𝑇 𝐻 ) = ( 𝐹 ∘f 𝑂 ( 𝐺 ∘f 𝑃 𝐻 ) ) ) |