Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsdi1.f |
|- F = ( LFnl ` W ) |
2 |
|
ldualvsdi1.r |
|- R = ( Scalar ` W ) |
3 |
|
ldualvsdi1.k |
|- K = ( Base ` R ) |
4 |
|
ldualvsdi1.d |
|- D = ( LDual ` W ) |
5 |
|
ldualvsdi1.p |
|- .+ = ( +g ` D ) |
6 |
|
ldualvsdi1.s |
|- .x. = ( .s ` D ) |
7 |
|
ldualvsdi1.w |
|- ( ph -> W e. LMod ) |
8 |
|
ldualvsdi1.x |
|- ( ph -> X e. K ) |
9 |
|
ldualvsdi1.g |
|- ( ph -> G e. F ) |
10 |
|
ldualvsdi1.h |
|- ( ph -> H e. F ) |
11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
13 |
1 11 2 3 12 4 6 7 8 9
|
ldualvs |
|- ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
14 |
1 11 2 3 12 4 6 7 8 10
|
ldualvs |
|- ( ph -> ( X .x. H ) = ( H oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
15 |
13 14
|
oveq12d |
|- ( ph -> ( ( X .x. G ) oF ( +g ` R ) ( X .x. H ) ) = ( ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) oF ( +g ` R ) ( H oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
16 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
17 |
1 2 3 4 6 7 8 9
|
ldualvscl |
|- ( ph -> ( X .x. G ) e. F ) |
18 |
1 2 3 4 6 7 8 10
|
ldualvscl |
|- ( ph -> ( X .x. H ) e. F ) |
19 |
1 2 16 4 5 7 17 18
|
ldualvadd |
|- ( ph -> ( ( X .x. G ) .+ ( X .x. H ) ) = ( ( X .x. G ) oF ( +g ` R ) ( X .x. H ) ) ) |
20 |
1 4 5 7 9 10
|
ldualvaddcl |
|- ( ph -> ( G .+ H ) e. F ) |
21 |
1 11 2 3 12 4 6 7 8 20
|
ldualvs |
|- ( ph -> ( X .x. ( G .+ H ) ) = ( ( G .+ H ) oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
22 |
1 2 16 4 5 7 9 10
|
ldualvadd |
|- ( ph -> ( G .+ H ) = ( G oF ( +g ` R ) H ) ) |
23 |
22
|
oveq1d |
|- ( ph -> ( ( G .+ H ) oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) = ( ( G oF ( +g ` R ) H ) oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
24 |
11 2 3 16 12 1 7 8 9 10
|
lflvsdi1 |
|- ( ph -> ( ( G oF ( +g ` R ) H ) oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) = ( ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) oF ( +g ` R ) ( H oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
25 |
21 23 24
|
3eqtrd |
|- ( ph -> ( X .x. ( G .+ H ) ) = ( ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) oF ( +g ` R ) ( H oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
26 |
15 19 25
|
3eqtr4rd |
|- ( ph -> ( X .x. ( G .+ H ) ) = ( ( X .x. G ) .+ ( X .x. H ) ) ) |