Step |
Hyp |
Ref |
Expression |
1 |
|
ldualfvs.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldualfvs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
ldualfvs.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
4 |
|
ldualfvs.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
ldualfvs.t |
⊢ × = ( .r ‘ 𝑅 ) |
6 |
|
ldualfvs.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
7 |
|
ldualfvs.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐷 ) |
8 |
|
ldualfvs.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑌 ) |
9 |
|
ldualvs.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
10 |
|
ldualvs.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
11 |
|
ldualvs.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
ldualvs |
⊢ ( 𝜑 → ( 𝑋 ∙ 𝐺 ) = ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ‘ 𝐴 ) ) |
14 |
2
|
fvexi |
⊢ 𝑉 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
16 |
3 4 2 1
|
lflf |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ 𝐾 ) |
17 |
8 10 16
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ 𝐾 ) |
18 |
17
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑉 ) |
19 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
20 |
15 9 18 19
|
ofc2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ‘ 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) × 𝑋 ) ) |
21 |
11 20
|
mpdan |
⊢ ( 𝜑 → ( ( 𝐺 ∘f × ( 𝑉 × { 𝑋 } ) ) ‘ 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) × 𝑋 ) ) |
22 |
13 21
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ∙ 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) × 𝑋 ) ) |