Metamath Proof Explorer


Theorem ldualvsval

Description: Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualfvs.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualfvs.v 𝑉 = ( Base ‘ 𝑊 )
ldualfvs.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualfvs.k 𝐾 = ( Base ‘ 𝑅 )
ldualfvs.t × = ( .r𝑅 )
ldualfvs.d 𝐷 = ( LDual ‘ 𝑊 )
ldualfvs.s = ( ·𝑠𝐷 )
ldualfvs.w ( 𝜑𝑊𝑌 )
ldualvs.x ( 𝜑𝑋𝐾 )
ldualvs.g ( 𝜑𝐺𝐹 )
ldualvs.a ( 𝜑𝐴𝑉 )
Assertion ldualvsval ( 𝜑 → ( ( 𝑋 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺𝐴 ) × 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ldualfvs.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldualfvs.v 𝑉 = ( Base ‘ 𝑊 )
3 ldualfvs.r 𝑅 = ( Scalar ‘ 𝑊 )
4 ldualfvs.k 𝐾 = ( Base ‘ 𝑅 )
5 ldualfvs.t × = ( .r𝑅 )
6 ldualfvs.d 𝐷 = ( LDual ‘ 𝑊 )
7 ldualfvs.s = ( ·𝑠𝐷 )
8 ldualfvs.w ( 𝜑𝑊𝑌 )
9 ldualvs.x ( 𝜑𝑋𝐾 )
10 ldualvs.g ( 𝜑𝐺𝐹 )
11 ldualvs.a ( 𝜑𝐴𝑉 )
12 1 2 3 4 5 6 7 8 9 10 ldualvs ( 𝜑 → ( 𝑋 𝐺 ) = ( 𝐺f × ( 𝑉 × { 𝑋 } ) ) )
13 12 fveq1d ( 𝜑 → ( ( 𝑋 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺f × ( 𝑉 × { 𝑋 } ) ) ‘ 𝐴 ) )
14 2 fvexi 𝑉 ∈ V
15 14 a1i ( 𝜑𝑉 ∈ V )
16 3 4 2 1 lflf ( ( 𝑊𝑌𝐺𝐹 ) → 𝐺 : 𝑉𝐾 )
17 8 10 16 syl2anc ( 𝜑𝐺 : 𝑉𝐾 )
18 17 ffnd ( 𝜑𝐺 Fn 𝑉 )
19 eqidd ( ( 𝜑𝐴𝑉 ) → ( 𝐺𝐴 ) = ( 𝐺𝐴 ) )
20 15 9 18 19 ofc2 ( ( 𝜑𝐴𝑉 ) → ( ( 𝐺f × ( 𝑉 × { 𝑋 } ) ) ‘ 𝐴 ) = ( ( 𝐺𝐴 ) × 𝑋 ) )
21 11 20 mpdan ( 𝜑 → ( ( 𝐺f × ( 𝑉 × { 𝑋 } ) ) ‘ 𝐴 ) = ( ( 𝐺𝐴 ) × 𝑋 ) )
22 13 21 eqtrd ( 𝜑 → ( ( 𝑋 𝐺 ) ‘ 𝐴 ) = ( ( 𝐺𝐴 ) × 𝑋 ) )