Metamath Proof Explorer


Theorem ldualsmul

Description: Scalar multiplication for the dual of a vector space. (Contributed by NM, 19-Oct-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses ldualsmul.f F = Scalar W
ldualsmul.k K = Base F
ldualsmul.t · ˙ = F
ldualsmul.d D = LDual W
ldualsmul.r R = Scalar D
ldualsmul.m ˙ = R
ldualsmul.w φ W V
ldualsmul.x φ X K
ldualsmul.y φ Y K
Assertion ldualsmul φ X ˙ Y = Y · ˙ X

Proof

Step Hyp Ref Expression
1 ldualsmul.f F = Scalar W
2 ldualsmul.k K = Base F
3 ldualsmul.t · ˙ = F
4 ldualsmul.d D = LDual W
5 ldualsmul.r R = Scalar D
6 ldualsmul.m ˙ = R
7 ldualsmul.w φ W V
8 ldualsmul.x φ X K
9 ldualsmul.y φ Y K
10 eqid opp r F = opp r F
11 1 10 4 5 7 ldualsca φ R = opp r F
12 11 fveq2d φ R = opp r F
13 6 12 syl5eq φ ˙ = opp r F
14 13 oveqd φ X ˙ Y = X opp r F Y
15 eqid opp r F = opp r F
16 2 3 10 15 opprmul X opp r F Y = Y · ˙ X
17 14 16 eqtrdi φ X ˙ Y = Y · ˙ X