| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfladdcl.r |
⊢ 𝑅 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lfladdcl.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
lfladdcl.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 4 |
|
lfladdcl.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lfladdcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 6 |
|
lfladdcl.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
| 7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑊 ∈ LMod ) |
| 8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
1 10 2
|
lmodacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 |
7 8 9 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 14 |
1 10 13 3
|
lflf |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 15 |
4 5 14
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 16 |
1 10 13 3
|
lflf |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ) → 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 17 |
4 6 16
|
syl2anc |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 18 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) ∈ V ) |
| 19 |
|
inidm |
⊢ ( ( Base ‘ 𝑊 ) ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑊 ) |
| 20 |
12 15 17 18 18 19
|
off |
⊢ ( 𝜑 → ( 𝐺 ∘f + 𝐻 ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 22 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 24 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 25 |
13 1 24 10
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 26 |
21 22 23 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 27 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 28 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 29 |
13 28
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ 𝑊 ) ) |
| 30 |
21 26 27 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ 𝑊 ) ) |
| 31 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ( Base ‘ 𝑊 ) ) |
| 32 |
17
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn ( Base ‘ 𝑊 ) ) |
| 33 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 34 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 35 |
31 32 18 18 19 33 34
|
ofval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) + ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 36 |
30 35
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) + ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 37 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 38 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 39 |
31 32 18 18 19 37 38
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) = ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) |
| 40 |
23 39
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) = ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 42 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 𝑧 ) ) |
| 44 |
31 32 18 18 19 42 43
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) |
| 45 |
27 44
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) |
| 46 |
41 45
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) ) + ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) + ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 47 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐺 ∈ 𝐹 ) |
| 48 |
1 2 13 28 3
|
lfladd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 49 |
21 47 26 27 48
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 50 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝐻 ∈ 𝐹 ) |
| 51 |
1 2 13 28 3
|
lfladd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ 𝑧 ) ) ) |
| 52 |
21 50 26 27 51
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ 𝑧 ) ) ) |
| 53 |
49 52
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) + ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) = ( ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐺 ‘ 𝑧 ) ) + ( ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 54 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑅 ∈ Ring ) |
| 55 |
21 54
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑅 ∈ Ring ) |
| 56 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑅 ∈ CMnd ) |
| 58 |
1 10 13 3
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 |
21 47 26 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 60 |
1 10 13 3
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 61 |
21 47 27 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 62 |
1 10 13 3
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 63 |
21 50 26 62
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 64 |
1 10 13 3
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 65 |
21 50 27 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐻 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 66 |
10 2
|
cmn4 |
⊢ ( ( 𝑅 ∈ CMnd ∧ ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐻 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐺 ‘ 𝑧 ) ) + ( ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ 𝑧 ) ) ) = ( ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) + ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 67 |
57 59 61 63 65 66
|
syl122anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐺 ‘ 𝑧 ) ) + ( ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ 𝑧 ) ) ) = ( ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) + ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 68 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 69 |
1 10 68 13 24 3
|
lflmul |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 70 |
21 47 22 23 69
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 71 |
1 10 68 13 24 3
|
lflmul |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 72 |
21 50 22 23 71
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 73 |
70 72
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) + ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 74 |
1 10 13 3
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 75 |
21 47 23 74
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 76 |
1 10 13 3
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐻 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 77 |
21 50 23 76
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝐻 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 78 |
10 2 68
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐻 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) + ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 79 |
55 22 75 77 78
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐺 ‘ 𝑦 ) ) + ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 80 |
73 79
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) + ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) + ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) + ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 82 |
53 67 81
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) + ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ‘ 𝑦 ) + ( 𝐻 ‘ 𝑦 ) ) ) + ( ( 𝐺 ‘ 𝑧 ) + ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 83 |
46 82
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) ) + ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) ) = ( ( 𝐺 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) + ( 𝐻 ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 84 |
36 83
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐺 ∘f + 𝐻 ) ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) ) + ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) ) ) |
| 85 |
84
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) ) + ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) ) ) |
| 86 |
13 28 1 24 10 2 68 3
|
islfl |
⊢ ( 𝑊 ∈ LMod → ( ( 𝐺 ∘f + 𝐻 ) ∈ 𝐹 ↔ ( ( 𝐺 ∘f + 𝐻 ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) ) + ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) ) ) ) ) |
| 87 |
4 86
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ∘f + 𝐻 ) ∈ 𝐹 ↔ ( ( 𝐺 ∘f + 𝐻 ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑦 ) ) + ( ( 𝐺 ∘f + 𝐻 ) ‘ 𝑧 ) ) ) ) ) |
| 88 |
20 85 87
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐺 ∘f + 𝐻 ) ∈ 𝐹 ) |