Metamath Proof Explorer
		
		
		
		Description:  Value of a restriction of the function operation map.  (Contributed by NM, 20-Oct-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ofmresval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
					
						|  |  | ofmresval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
				
					|  | Assertion | ofmresval | ⊢  ( 𝜑  →  ( 𝐹 (  ∘f  𝑅  ↾  ( 𝐴  ×  𝐵 ) ) 𝐺 )  =  ( 𝐹  ∘f  𝑅 𝐺 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofmresval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 2 |  | ofmresval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 3 |  | ovres | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹 (  ∘f  𝑅  ↾  ( 𝐴  ×  𝐵 ) ) 𝐺 )  =  ( 𝐹  ∘f  𝑅 𝐺 ) ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 (  ∘f  𝑅  ↾  ( 𝐴  ×  𝐵 ) ) 𝐺 )  =  ( 𝐹  ∘f  𝑅 𝐺 ) ) |