Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvbase.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdvbase.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcdvbase.c |
|- C = ( ( LCDual ` K ) ` W ) |
4 |
|
lcdvbase.v |
|- V = ( Base ` C ) |
5 |
|
lcdvbase.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
lcdvbase.f |
|- F = ( LFnl ` U ) |
7 |
|
lcdvbase.l |
|- L = ( LKer ` U ) |
8 |
|
lcdvbase.b |
|- B = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
9 |
|
lcdvbase.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
11 |
1 2 3 5 6 7 10 9 8
|
lcdval2 |
|- ( ph -> C = ( ( LDual ` U ) |`s B ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( Base ` C ) = ( Base ` ( ( LDual ` U ) |`s B ) ) ) |
13 |
4 12
|
syl5eq |
|- ( ph -> V = ( Base ` ( ( LDual ` U ) |`s B ) ) ) |
14 |
|
ssrab2 |
|- { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } C_ F |
15 |
8 14
|
eqsstri |
|- B C_ F |
16 |
|
eqid |
|- ( Base ` ( LDual ` U ) ) = ( Base ` ( LDual ` U ) ) |
17 |
1 5 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
6 10 16 17
|
ldualvbase |
|- ( ph -> ( Base ` ( LDual ` U ) ) = F ) |
19 |
15 18
|
sseqtrrid |
|- ( ph -> B C_ ( Base ` ( LDual ` U ) ) ) |
20 |
|
eqid |
|- ( ( LDual ` U ) |`s B ) = ( ( LDual ` U ) |`s B ) |
21 |
20 16
|
ressbas2 |
|- ( B C_ ( Base ` ( LDual ` U ) ) -> B = ( Base ` ( ( LDual ` U ) |`s B ) ) ) |
22 |
19 21
|
syl |
|- ( ph -> B = ( Base ` ( ( LDual ` U ) |`s B ) ) ) |
23 |
13 22
|
eqtr4d |
|- ( ph -> V = B ) |