Metamath Proof Explorer


Theorem lcdvbase

Description: Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdvbase.h
|- H = ( LHyp ` K )
lcdvbase.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcdvbase.c
|- C = ( ( LCDual ` K ) ` W )
lcdvbase.v
|- V = ( Base ` C )
lcdvbase.u
|- U = ( ( DVecH ` K ) ` W )
lcdvbase.f
|- F = ( LFnl ` U )
lcdvbase.l
|- L = ( LKer ` U )
lcdvbase.b
|- B = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
lcdvbase.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdvbase
|- ( ph -> V = B )

Proof

Step Hyp Ref Expression
1 lcdvbase.h
 |-  H = ( LHyp ` K )
2 lcdvbase.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcdvbase.c
 |-  C = ( ( LCDual ` K ) ` W )
4 lcdvbase.v
 |-  V = ( Base ` C )
5 lcdvbase.u
 |-  U = ( ( DVecH ` K ) ` W )
6 lcdvbase.f
 |-  F = ( LFnl ` U )
7 lcdvbase.l
 |-  L = ( LKer ` U )
8 lcdvbase.b
 |-  B = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
9 lcdvbase.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
11 1 2 3 5 6 7 10 9 8 lcdval2
 |-  ( ph -> C = ( ( LDual ` U ) |`s B ) )
12 11 fveq2d
 |-  ( ph -> ( Base ` C ) = ( Base ` ( ( LDual ` U ) |`s B ) ) )
13 4 12 syl5eq
 |-  ( ph -> V = ( Base ` ( ( LDual ` U ) |`s B ) ) )
14 ssrab2
 |-  { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } C_ F
15 8 14 eqsstri
 |-  B C_ F
16 eqid
 |-  ( Base ` ( LDual ` U ) ) = ( Base ` ( LDual ` U ) )
17 1 5 9 dvhlmod
 |-  ( ph -> U e. LMod )
18 6 10 16 17 ldualvbase
 |-  ( ph -> ( Base ` ( LDual ` U ) ) = F )
19 15 18 sseqtrrid
 |-  ( ph -> B C_ ( Base ` ( LDual ` U ) ) )
20 eqid
 |-  ( ( LDual ` U ) |`s B ) = ( ( LDual ` U ) |`s B )
21 20 16 ressbas2
 |-  ( B C_ ( Base ` ( LDual ` U ) ) -> B = ( Base ` ( ( LDual ` U ) |`s B ) ) )
22 19 21 syl
 |-  ( ph -> B = ( Base ` ( ( LDual ` U ) |`s B ) ) )
23 13 22 eqtr4d
 |-  ( ph -> V = B )