Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcdval.h | |- H = ( LHyp ` K ) |
|
lcdval.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
||
lcdval.c | |- C = ( ( LCDual ` K ) ` W ) |
||
lcdval.u | |- U = ( ( DVecH ` K ) ` W ) |
||
lcdval.f | |- F = ( LFnl ` U ) |
||
lcdval.l | |- L = ( LKer ` U ) |
||
lcdval.d | |- D = ( LDual ` U ) |
||
lcdval.k | |- ( ph -> ( K e. X /\ W e. H ) ) |
||
lcdval2.b | |- B = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
||
Assertion | lcdval2 | |- ( ph -> C = ( D |`s B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdval.h | |- H = ( LHyp ` K ) |
|
2 | lcdval.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
|
3 | lcdval.c | |- C = ( ( LCDual ` K ) ` W ) |
|
4 | lcdval.u | |- U = ( ( DVecH ` K ) ` W ) |
|
5 | lcdval.f | |- F = ( LFnl ` U ) |
|
6 | lcdval.l | |- L = ( LKer ` U ) |
|
7 | lcdval.d | |- D = ( LDual ` U ) |
|
8 | lcdval.k | |- ( ph -> ( K e. X /\ W e. H ) ) |
|
9 | lcdval2.b | |- B = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
|
10 | 1 2 3 4 5 6 7 8 | lcdval | |- ( ph -> C = ( D |`s { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) ) |
11 | 9 | oveq2i | |- ( D |`s B ) = ( D |`s { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
12 | 10 11 | eqtr4di | |- ( ph -> C = ( D |`s B ) ) |