Metamath Proof Explorer


Theorem lcdval2

Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdval.h
|- H = ( LHyp ` K )
lcdval.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcdval.c
|- C = ( ( LCDual ` K ) ` W )
lcdval.u
|- U = ( ( DVecH ` K ) ` W )
lcdval.f
|- F = ( LFnl ` U )
lcdval.l
|- L = ( LKer ` U )
lcdval.d
|- D = ( LDual ` U )
lcdval.k
|- ( ph -> ( K e. X /\ W e. H ) )
lcdval2.b
|- B = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
Assertion lcdval2
|- ( ph -> C = ( D |`s B ) )

Proof

Step Hyp Ref Expression
1 lcdval.h
 |-  H = ( LHyp ` K )
2 lcdval.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcdval.c
 |-  C = ( ( LCDual ` K ) ` W )
4 lcdval.u
 |-  U = ( ( DVecH ` K ) ` W )
5 lcdval.f
 |-  F = ( LFnl ` U )
6 lcdval.l
 |-  L = ( LKer ` U )
7 lcdval.d
 |-  D = ( LDual ` U )
8 lcdval.k
 |-  ( ph -> ( K e. X /\ W e. H ) )
9 lcdval2.b
 |-  B = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
10 1 2 3 4 5 6 7 8 lcdval
 |-  ( ph -> C = ( D |`s { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) )
11 9 oveq2i
 |-  ( D |`s B ) = ( D |`s { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } )
12 10 11 eqtr4di
 |-  ( ph -> C = ( D |`s B ) )