Step |
Hyp |
Ref |
Expression |
1 |
|
lcdval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdval.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcdval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
lcdval.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcdval.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcdval.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcdval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
lcdval2.b |
⊢ 𝐵 = { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
10 |
1 2 3 4 5 6 7 8
|
lcdval |
⊢ ( 𝜑 → 𝐶 = ( 𝐷 ↾s { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) ) |
11 |
9
|
oveq2i |
⊢ ( 𝐷 ↾s 𝐵 ) = ( 𝐷 ↾s { 𝑓 ∈ 𝐹 ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } ) |
12 |
10 11
|
eqtr4di |
⊢ ( 𝜑 → 𝐶 = ( 𝐷 ↾s 𝐵 ) ) |