Metamath Proof Explorer


Theorem lcdval2

Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdval.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdval.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcdval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdval.f 𝐹 = ( LFnl ‘ 𝑈 )
lcdval.l 𝐿 = ( LKer ‘ 𝑈 )
lcdval.d 𝐷 = ( LDual ‘ 𝑈 )
lcdval.k ( 𝜑 → ( 𝐾𝑋𝑊𝐻 ) )
lcdval2.b 𝐵 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
Assertion lcdval2 ( 𝜑𝐶 = ( 𝐷s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lcdval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdval.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
4 lcdval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 lcdval.f 𝐹 = ( LFnl ‘ 𝑈 )
6 lcdval.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcdval.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcdval.k ( 𝜑 → ( 𝐾𝑋𝑊𝐻 ) )
9 lcdval2.b 𝐵 = { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
10 1 2 3 4 5 6 7 8 lcdval ( 𝜑𝐶 = ( 𝐷s { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ) )
11 9 oveq2i ( 𝐷s 𝐵 ) = ( 𝐷s { 𝑓𝐹 ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } )
12 10 11 eqtr4di ( 𝜑𝐶 = ( 𝐷s 𝐵 ) )