Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lcdval2
Next ⟩
lcdlvec
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcdval2
Description:
Dual vector space of functionals with closed kernels.
(Contributed by
NM
, 13-Mar-2015)
Ref
Expression
Hypotheses
lcdval.h
⊢
H
=
LHyp
⁡
K
lcdval.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
lcdval.c
⊢
C
=
LCDual
⁡
K
⁡
W
lcdval.u
⊢
U
=
DVecH
⁡
K
⁡
W
lcdval.f
⊢
F
=
LFnl
⁡
U
lcdval.l
⊢
L
=
LKer
⁡
U
lcdval.d
⊢
D
=
LDual
⁡
U
lcdval.k
⊢
φ
→
K
∈
X
∧
W
∈
H
lcdval2.b
⊢
B
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
Assertion
lcdval2
⊢
φ
→
C
=
D
↾
𝑠
B
Proof
Step
Hyp
Ref
Expression
1
lcdval.h
⊢
H
=
LHyp
⁡
K
2
lcdval.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
3
lcdval.c
⊢
C
=
LCDual
⁡
K
⁡
W
4
lcdval.u
⊢
U
=
DVecH
⁡
K
⁡
W
5
lcdval.f
⊢
F
=
LFnl
⁡
U
6
lcdval.l
⊢
L
=
LKer
⁡
U
7
lcdval.d
⊢
D
=
LDual
⁡
U
8
lcdval.k
⊢
φ
→
K
∈
X
∧
W
∈
H
9
lcdval2.b
⊢
B
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
10
1
2
3
4
5
6
7
8
lcdval
⊢
φ
→
C
=
D
↾
𝑠
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
11
9
oveq2i
⊢
D
↾
𝑠
B
=
D
↾
𝑠
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
12
10
11
eqtr4di
⊢
φ
→
C
=
D
↾
𝑠
B