Metamath Proof Explorer


Theorem lcdval2

Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdval.h H=LHypK
lcdval.o ˙=ocHKW
lcdval.c C=LCDualKW
lcdval.u U=DVecHKW
lcdval.f F=LFnlU
lcdval.l L=LKerU
lcdval.d D=LDualU
lcdval.k φKXWH
lcdval2.b B=fF|˙˙Lf=Lf
Assertion lcdval2 φC=D𝑠B

Proof

Step Hyp Ref Expression
1 lcdval.h H=LHypK
2 lcdval.o ˙=ocHKW
3 lcdval.c C=LCDualKW
4 lcdval.u U=DVecHKW
5 lcdval.f F=LFnlU
6 lcdval.l L=LKerU
7 lcdval.d D=LDualU
8 lcdval.k φKXWH
9 lcdval2.b B=fF|˙˙Lf=Lf
10 1 2 3 4 5 6 7 8 lcdval φC=D𝑠fF|˙˙Lf=Lf
11 9 oveq2i D𝑠B=D𝑠fF|˙˙Lf=Lf
12 10 11 eqtr4di φC=D𝑠B