Metamath Proof Explorer


Theorem lcdval

Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdval.h H=LHypK
lcdval.o ˙=ocHKW
lcdval.c C=LCDualKW
lcdval.u U=DVecHKW
lcdval.f F=LFnlU
lcdval.l L=LKerU
lcdval.d D=LDualU
lcdval.k φKXWH
Assertion lcdval φC=D𝑠fF|˙˙Lf=Lf

Proof

Step Hyp Ref Expression
1 lcdval.h H=LHypK
2 lcdval.o ˙=ocHKW
3 lcdval.c C=LCDualKW
4 lcdval.u U=DVecHKW
5 lcdval.f F=LFnlU
6 lcdval.l L=LKerU
7 lcdval.d D=LDualU
8 lcdval.k φKXWH
9 1 lcdfval KXLCDualK=wHLDualDVecHKw𝑠fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwf
10 9 fveq1d KXLCDualKW=wHLDualDVecHKw𝑠fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfW
11 3 10 eqtrid KXC=wHLDualDVecHKw𝑠fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfW
12 fveq2 w=WDVecHKw=DVecHKW
13 12 4 eqtr4di w=WDVecHKw=U
14 13 fveq2d w=WLDualDVecHKw=LDualU
15 14 7 eqtr4di w=WLDualDVecHKw=D
16 13 fveq2d w=WLFnlDVecHKw=LFnlU
17 16 5 eqtr4di w=WLFnlDVecHKw=F
18 fveq2 w=WocHKw=ocHKW
19 18 2 eqtr4di w=WocHKw=˙
20 13 fveq2d w=WLKerDVecHKw=LKerU
21 20 6 eqtr4di w=WLKerDVecHKw=L
22 21 fveq1d w=WLKerDVecHKwf=Lf
23 19 22 fveq12d w=WocHKwLKerDVecHKwf=˙Lf
24 19 23 fveq12d w=WocHKwocHKwLKerDVecHKwf=˙˙Lf
25 24 22 eqeq12d w=WocHKwocHKwLKerDVecHKwf=LKerDVecHKwf˙˙Lf=Lf
26 17 25 rabeqbidv w=WfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwf=fF|˙˙Lf=Lf
27 15 26 oveq12d w=WLDualDVecHKw𝑠fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwf=D𝑠fF|˙˙Lf=Lf
28 eqid wHLDualDVecHKw𝑠fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwf=wHLDualDVecHKw𝑠fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwf
29 ovex D𝑠fF|˙˙Lf=LfV
30 27 28 29 fvmpt WHwHLDualDVecHKw𝑠fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfW=D𝑠fF|˙˙Lf=Lf
31 11 30 sylan9eq KXWHC=D𝑠fF|˙˙Lf=Lf
32 8 31 syl φC=D𝑠fF|˙˙Lf=Lf