Metamath Proof Explorer


Definition df-lcdual

Description: Dual vector space of functionals with closed kernels. Note: we could also define this directly without mapd by using mapdrn . TODO: see if it makes sense to go back and replace some of the LDual stuff with this. TODO: We could simplify df-mapd using ( Base( ( LCDualK )W ) ) . (Contributed by NM, 13-Mar-2015)

Ref Expression
Assertion df-lcdual LCDual=kVwLHypkLDualDVecHkw𝑠fLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwf

Detailed syntax breakdown

Step Hyp Ref Expression
0 clcd classLCDual
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 cld classLDual
8 cdvh classDVecH
9 5 8 cfv classDVecHk
10 3 cv setvarw
11 10 9 cfv classDVecHkw
12 11 7 cfv classLDualDVecHkw
13 cress class𝑠
14 vf setvarf
15 clfn classLFnl
16 11 15 cfv classLFnlDVecHkw
17 coch classocH
18 5 17 cfv classocHk
19 10 18 cfv classocHkw
20 clk classLKer
21 11 20 cfv classLKerDVecHkw
22 14 cv setvarf
23 22 21 cfv classLKerDVecHkwf
24 23 19 cfv classocHkwLKerDVecHkwf
25 24 19 cfv classocHkwocHkwLKerDVecHkwf
26 25 23 wceq wffocHkwocHkwLKerDVecHkwf=LKerDVecHkwf
27 26 14 16 crab classfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwf
28 12 27 13 co classLDualDVecHkw𝑠fLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwf
29 3 6 28 cmpt classwLHypkLDualDVecHkw𝑠fLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwf
30 1 2 29 cmpt classkVwLHypkLDualDVecHkw𝑠fLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwf
31 0 30 wceq wffLCDual=kVwLHypkLDualDVecHkw𝑠fLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwf