Metamath Proof Explorer


Theorem mapdrn

Description: Range of the map defined by df-mapd . (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapdrn.h H=LHypK
mapdrn.o O=ocHKW
mapdrn.m M=mapdKW
mapdrn.u U=DVecHKW
mapdrn.f F=LFnlU
mapdrn.l L=LKerU
mapdrn.d D=LDualU
mapdrn.t T=LSubSpD
mapdrn.c C=gF|OOLg=Lg
mapdrn.k φKHLWH
Assertion mapdrn φranM=T𝒫C

Proof

Step Hyp Ref Expression
1 mapdrn.h H=LHypK
2 mapdrn.o O=ocHKW
3 mapdrn.m M=mapdKW
4 mapdrn.u U=DVecHKW
5 mapdrn.f F=LFnlU
6 mapdrn.l L=LKerU
7 mapdrn.d D=LDualU
8 mapdrn.t T=LSubSpD
9 mapdrn.c C=gF|OOLg=Lg
10 mapdrn.k φKHLWH
11 eqid LSubSpU=LSubSpU
12 1 2 3 4 11 5 6 7 8 9 10 mapd1o φM:LSubSpU1-1 ontoT𝒫C
13 f1ofo M:LSubSpU1-1 ontoT𝒫CM:LSubSpUontoT𝒫C
14 forn M:LSubSpUontoT𝒫CranM=T𝒫C
15 12 13 14 3syl φranM=T𝒫C