Metamath Proof Explorer
Description: Range of the map defined by df-mapd . (Contributed by NM, 12-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mapdrn.h |
|
|
|
mapdrn.o |
|
|
|
mapdrn.m |
|
|
|
mapdrn.u |
|
|
|
mapdrn.f |
|
|
|
mapdrn.l |
|
|
|
mapdrn.d |
|
|
|
mapdrn.t |
|
|
|
mapdrn.c |
|
|
|
mapdrn.k |
|
|
Assertion |
mapdrn |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrn.h |
|
2 |
|
mapdrn.o |
|
3 |
|
mapdrn.m |
|
4 |
|
mapdrn.u |
|
5 |
|
mapdrn.f |
|
6 |
|
mapdrn.l |
|
7 |
|
mapdrn.d |
|
8 |
|
mapdrn.t |
|
9 |
|
mapdrn.c |
|
10 |
|
mapdrn.k |
|
11 |
|
eqid |
|
12 |
1 2 3 4 11 5 6 7 8 9 10
|
mapd1o |
|
13 |
|
f1ofo |
|
14 |
|
forn |
|
15 |
12 13 14
|
3syl |
|