Metamath Proof Explorer


Theorem mapd1o

Description: The map defined by df-mapd is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows M satisfies part of the definition of projectivity of Baer p. 40. TODO: change theorems leading to this ( lcfr , mapdrval , lclkrs , lclkr ,...) to use T i^i ~P C ? TODO: maybe get rid of $d's for g versus K U W ; propagate to mapdrn and any others. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapd1o.h H=LHypK
mapd1o.o O=ocHKW
mapd1o.m M=mapdKW
mapd1o.u U=DVecHKW
mapd1o.s S=LSubSpU
mapd1o.f F=LFnlU
mapd1o.l L=LKerU
mapd1o.d D=LDualU
mapd1o.t T=LSubSpD
mapd1o.c C=gF|OOLg=Lg
mapd1o.k φKHLWH
Assertion mapd1o φM:S1-1 ontoT𝒫C

Proof

Step Hyp Ref Expression
1 mapd1o.h H=LHypK
2 mapd1o.o O=ocHKW
3 mapd1o.m M=mapdKW
4 mapd1o.u U=DVecHKW
5 mapd1o.s S=LSubSpU
6 mapd1o.f F=LFnlU
7 mapd1o.l L=LKerU
8 mapd1o.d D=LDualU
9 mapd1o.t T=LSubSpD
10 mapd1o.c C=gF|OOLg=Lg
11 mapd1o.k φKHLWH
12 6 fvexi FV
13 12 rabex fF|OOLf=LfOLftV
14 eqid tSfF|OOLf=LfOLft=tSfF|OOLf=LfOLft
15 13 14 fnmpti tSfF|OOLf=LfOLftFnS
16 1 4 5 6 7 2 3 mapdfval KHLWHM=tSfF|OOLf=LfOLft
17 11 16 syl φM=tSfF|OOLf=LfOLft
18 17 fneq1d φMFnStSfF|OOLf=LfOLftFnS
19 15 18 mpbiri φMFnS
20 12 rabex gF|OOLg=LgOLgtV
21 eqid tSgF|OOLg=LgOLgt=tSgF|OOLg=LgOLgt
22 20 21 fnmpti tSgF|OOLg=LgOLgtFnS
23 1 4 5 6 7 2 3 mapdfval KHLWHM=tSgF|OOLg=LgOLgt
24 11 23 syl φM=tSgF|OOLg=LgOLgt
25 24 fneq1d φMFnStSgF|OOLg=LgOLgtFnS
26 22 25 mpbiri φMFnS
27 fvelrnb MFnStranMcSMc=t
28 26 27 syl φtranMcSMc=t
29 11 adantr φcSKHLWH
30 simpr φcScS
31 1 4 5 6 7 2 3 29 30 mapdval φcSMc=fF|OOLf=LfOLfc
32 eqid fF|OOLf=LfOLfc=fF|OOLf=LfOLfc
33 1 2 4 5 6 7 8 9 10 32 29 30 lclkrs2 φcSfF|OOLf=LfOLfcTfF|OOLf=LfOLfcC
34 elin fF|OOLf=LfOLfcT𝒫CfF|OOLf=LfOLfcTfF|OOLf=LfOLfc𝒫C
35 12 rabex fF|OOLf=LfOLfcV
36 35 elpw fF|OOLf=LfOLfc𝒫CfF|OOLf=LfOLfcC
37 36 anbi2i fF|OOLf=LfOLfcTfF|OOLf=LfOLfc𝒫CfF|OOLf=LfOLfcTfF|OOLf=LfOLfcC
38 34 37 bitr2i fF|OOLf=LfOLfcTfF|OOLf=LfOLfcCfF|OOLf=LfOLfcT𝒫C
39 33 38 sylib φcSfF|OOLf=LfOLfcT𝒫C
40 31 39 eqeltrd φcSMcT𝒫C
41 eleq1 Mc=tMcT𝒫CtT𝒫C
42 40 41 syl5ibcom φcSMc=ttT𝒫C
43 42 rexlimdva φcSMc=ttT𝒫C
44 eqid ftOLf=ftOLf
45 11 adantr φtT𝒫CKHLWH
46 inss1 T𝒫CT
47 46 sseli tT𝒫CtT
48 47 adantl φtT𝒫CtT
49 inss2 T𝒫C𝒫C
50 49 sseli tT𝒫Ct𝒫C
51 50 elpwid tT𝒫CtC
52 51 adantl φtT𝒫CtC
53 1 2 4 5 6 7 8 9 10 44 45 48 52 lcfr φtT𝒫CftOLfS
54 1 2 3 4 5 6 7 8 9 10 45 48 52 44 mapdrval φtT𝒫CMftOLf=t
55 fveqeq2 c=ftOLfMc=tMftOLf=t
56 55 rspcev ftOLfSMftOLf=tcSMc=t
57 53 54 56 syl2anc φtT𝒫CcSMc=t
58 57 ex φtT𝒫CcSMc=t
59 43 58 impbid φcSMc=ttT𝒫C
60 28 59 bitrd φtranMtT𝒫C
61 60 eqrdv φranM=T𝒫C
62 11 adantr φtSuSKHLWH
63 simprl φtSuStS
64 simprr φtSuSuS
65 1 4 5 3 62 63 64 mapd11 φtSuSMt=Mut=u
66 65 biimpd φtSuSMt=Mut=u
67 66 ralrimivva φtSuSMt=Mut=u
68 dff1o6 M:S1-1 ontoT𝒫CMFnSranM=T𝒫CtSuSMt=Mut=u
69 19 61 67 68 syl3anbrc φM:S1-1 ontoT𝒫C