Metamath Proof Explorer


Theorem mapd1o

Description: The map defined by df-mapd is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows M satisfies part of the definition of projectivity of Baer p. 40. TODO: change theorems leading to this ( lcfr , mapdrval , lclkrs , lclkr ,...) to use T i^i ~P C ? TODO: maybe get rid of $d's for g versus K U W ; propagate to mapdrn and any others. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapd1o.h H = LHyp K
mapd1o.o O = ocH K W
mapd1o.m M = mapd K W
mapd1o.u U = DVecH K W
mapd1o.s S = LSubSp U
mapd1o.f F = LFnl U
mapd1o.l L = LKer U
mapd1o.d D = LDual U
mapd1o.t T = LSubSp D
mapd1o.c C = g F | O O L g = L g
mapd1o.k φ K HL W H
Assertion mapd1o φ M : S 1-1 onto T 𝒫 C

Proof

Step Hyp Ref Expression
1 mapd1o.h H = LHyp K
2 mapd1o.o O = ocH K W
3 mapd1o.m M = mapd K W
4 mapd1o.u U = DVecH K W
5 mapd1o.s S = LSubSp U
6 mapd1o.f F = LFnl U
7 mapd1o.l L = LKer U
8 mapd1o.d D = LDual U
9 mapd1o.t T = LSubSp D
10 mapd1o.c C = g F | O O L g = L g
11 mapd1o.k φ K HL W H
12 6 fvexi F V
13 12 rabex f F | O O L f = L f O L f t V
14 eqid t S f F | O O L f = L f O L f t = t S f F | O O L f = L f O L f t
15 13 14 fnmpti t S f F | O O L f = L f O L f t Fn S
16 1 4 5 6 7 2 3 mapdfval K HL W H M = t S f F | O O L f = L f O L f t
17 11 16 syl φ M = t S f F | O O L f = L f O L f t
18 17 fneq1d φ M Fn S t S f F | O O L f = L f O L f t Fn S
19 15 18 mpbiri φ M Fn S
20 12 rabex g F | O O L g = L g O L g t V
21 eqid t S g F | O O L g = L g O L g t = t S g F | O O L g = L g O L g t
22 20 21 fnmpti t S g F | O O L g = L g O L g t Fn S
23 1 4 5 6 7 2 3 mapdfval K HL W H M = t S g F | O O L g = L g O L g t
24 11 23 syl φ M = t S g F | O O L g = L g O L g t
25 24 fneq1d φ M Fn S t S g F | O O L g = L g O L g t Fn S
26 22 25 mpbiri φ M Fn S
27 fvelrnb M Fn S t ran M c S M c = t
28 26 27 syl φ t ran M c S M c = t
29 11 adantr φ c S K HL W H
30 simpr φ c S c S
31 1 4 5 6 7 2 3 29 30 mapdval φ c S M c = f F | O O L f = L f O L f c
32 eqid f F | O O L f = L f O L f c = f F | O O L f = L f O L f c
33 1 2 4 5 6 7 8 9 10 32 29 30 lclkrs2 φ c S f F | O O L f = L f O L f c T f F | O O L f = L f O L f c C
34 elin f F | O O L f = L f O L f c T 𝒫 C f F | O O L f = L f O L f c T f F | O O L f = L f O L f c 𝒫 C
35 12 rabex f F | O O L f = L f O L f c V
36 35 elpw f F | O O L f = L f O L f c 𝒫 C f F | O O L f = L f O L f c C
37 36 anbi2i f F | O O L f = L f O L f c T f F | O O L f = L f O L f c 𝒫 C f F | O O L f = L f O L f c T f F | O O L f = L f O L f c C
38 34 37 bitr2i f F | O O L f = L f O L f c T f F | O O L f = L f O L f c C f F | O O L f = L f O L f c T 𝒫 C
39 33 38 sylib φ c S f F | O O L f = L f O L f c T 𝒫 C
40 31 39 eqeltrd φ c S M c T 𝒫 C
41 eleq1 M c = t M c T 𝒫 C t T 𝒫 C
42 40 41 syl5ibcom φ c S M c = t t T 𝒫 C
43 42 rexlimdva φ c S M c = t t T 𝒫 C
44 eqid f t O L f = f t O L f
45 11 adantr φ t T 𝒫 C K HL W H
46 inss1 T 𝒫 C T
47 46 sseli t T 𝒫 C t T
48 47 adantl φ t T 𝒫 C t T
49 inss2 T 𝒫 C 𝒫 C
50 49 sseli t T 𝒫 C t 𝒫 C
51 50 elpwid t T 𝒫 C t C
52 51 adantl φ t T 𝒫 C t C
53 1 2 4 5 6 7 8 9 10 44 45 48 52 lcfr φ t T 𝒫 C f t O L f S
54 1 2 3 4 5 6 7 8 9 10 45 48 52 44 mapdrval φ t T 𝒫 C M f t O L f = t
55 fveqeq2 c = f t O L f M c = t M f t O L f = t
56 55 rspcev f t O L f S M f t O L f = t c S M c = t
57 53 54 56 syl2anc φ t T 𝒫 C c S M c = t
58 57 ex φ t T 𝒫 C c S M c = t
59 43 58 impbid φ c S M c = t t T 𝒫 C
60 28 59 bitrd φ t ran M t T 𝒫 C
61 60 eqrdv φ ran M = T 𝒫 C
62 11 adantr φ t S u S K HL W H
63 simprl φ t S u S t S
64 simprr φ t S u S u S
65 1 4 5 3 62 63 64 mapd11 φ t S u S M t = M u t = u
66 65 biimpd φ t S u S M t = M u t = u
67 66 ralrimivva φ t S u S M t = M u t = u
68 dff1o6 M : S 1-1 onto T 𝒫 C M Fn S ran M = T 𝒫 C t S u S M t = M u t = u
69 19 61 67 68 syl3anbrc φ M : S 1-1 onto T 𝒫 C