Metamath Proof Explorer


Theorem dff1o6

Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008)

Ref Expression
Assertion dff1o6 F:A1-1 ontoBFFnAranF=BxAyAFx=Fyx=y

Proof

Step Hyp Ref Expression
1 df-f1o F:A1-1 ontoBF:A1-1BF:AontoB
2 dff13 F:A1-1BF:ABxAyAFx=Fyx=y
3 df-fo F:AontoBFFnAranF=B
4 2 3 anbi12i F:A1-1BF:AontoBF:ABxAyAFx=Fyx=yFFnAranF=B
5 df-3an FFnAranF=BxAyAFx=Fyx=yFFnAranF=BxAyAFx=Fyx=y
6 eqimss ranF=BranFB
7 6 anim2i FFnAranF=BFFnAranFB
8 df-f F:ABFFnAranFB
9 7 8 sylibr FFnAranF=BF:AB
10 9 pm4.71ri FFnAranF=BF:ABFFnAranF=B
11 10 anbi1i FFnAranF=BxAyAFx=Fyx=yF:ABFFnAranF=BxAyAFx=Fyx=y
12 an32 F:ABFFnAranF=BxAyAFx=Fyx=yF:ABxAyAFx=Fyx=yFFnAranF=B
13 5 11 12 3bitrri F:ABxAyAFx=Fyx=yFFnAranF=BFFnAranF=BxAyAFx=Fyx=y
14 1 4 13 3bitri F:A1-1 ontoBFFnAranF=BxAyAFx=Fyx=y