| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapd1o.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapd1o.o |
|- O = ( ( ocH ` K ) ` W ) |
| 3 |
|
mapd1o.m |
|- M = ( ( mapd ` K ) ` W ) |
| 4 |
|
mapd1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
mapd1o.s |
|- S = ( LSubSp ` U ) |
| 6 |
|
mapd1o.f |
|- F = ( LFnl ` U ) |
| 7 |
|
mapd1o.l |
|- L = ( LKer ` U ) |
| 8 |
|
mapd1o.d |
|- D = ( LDual ` U ) |
| 9 |
|
mapd1o.t |
|- T = ( LSubSp ` D ) |
| 10 |
|
mapd1o.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
| 11 |
|
mapd1o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 12 |
6
|
fvexi |
|- F e. _V |
| 13 |
12
|
rabex |
|- { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } e. _V |
| 14 |
|
eqid |
|- ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) = ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) |
| 15 |
13 14
|
fnmpti |
|- ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) Fn S |
| 16 |
1 4 5 6 7 2 3
|
mapdfval |
|- ( ( K e. HL /\ W e. H ) -> M = ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) ) |
| 17 |
11 16
|
syl |
|- ( ph -> M = ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) ) |
| 18 |
17
|
fneq1d |
|- ( ph -> ( M Fn S <-> ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) Fn S ) ) |
| 19 |
15 18
|
mpbiri |
|- ( ph -> M Fn S ) |
| 20 |
12
|
rabex |
|- { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } e. _V |
| 21 |
|
eqid |
|- ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) = ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) |
| 22 |
20 21
|
fnmpti |
|- ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) Fn S |
| 23 |
1 4 5 6 7 2 3
|
mapdfval |
|- ( ( K e. HL /\ W e. H ) -> M = ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) ) |
| 24 |
11 23
|
syl |
|- ( ph -> M = ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) ) |
| 25 |
24
|
fneq1d |
|- ( ph -> ( M Fn S <-> ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) Fn S ) ) |
| 26 |
22 25
|
mpbiri |
|- ( ph -> M Fn S ) |
| 27 |
|
fvelrnb |
|- ( M Fn S -> ( t e. ran M <-> E. c e. S ( M ` c ) = t ) ) |
| 28 |
26 27
|
syl |
|- ( ph -> ( t e. ran M <-> E. c e. S ( M ` c ) = t ) ) |
| 29 |
11
|
adantr |
|- ( ( ph /\ c e. S ) -> ( K e. HL /\ W e. H ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ c e. S ) -> c e. S ) |
| 31 |
1 4 5 6 7 2 3 29 30
|
mapdval |
|- ( ( ph /\ c e. S ) -> ( M ` c ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } ) |
| 32 |
|
eqid |
|- { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } |
| 33 |
1 2 4 5 6 7 8 9 10 32 29 30
|
lclkrs2 |
|- ( ( ph /\ c e. S ) -> ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) ) |
| 34 |
|
elin |
|- ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ( T i^i ~P C ) <-> ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ~P C ) ) |
| 35 |
12
|
rabex |
|- { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. _V |
| 36 |
35
|
elpw |
|- ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ~P C <-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) |
| 37 |
36
|
anbi2i |
|- ( ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ~P C ) <-> ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) ) |
| 38 |
34 37
|
bitr2i |
|- ( ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) <-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ( T i^i ~P C ) ) |
| 39 |
33 38
|
sylib |
|- ( ( ph /\ c e. S ) -> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ( T i^i ~P C ) ) |
| 40 |
31 39
|
eqeltrd |
|- ( ( ph /\ c e. S ) -> ( M ` c ) e. ( T i^i ~P C ) ) |
| 41 |
|
eleq1 |
|- ( ( M ` c ) = t -> ( ( M ` c ) e. ( T i^i ~P C ) <-> t e. ( T i^i ~P C ) ) ) |
| 42 |
40 41
|
syl5ibcom |
|- ( ( ph /\ c e. S ) -> ( ( M ` c ) = t -> t e. ( T i^i ~P C ) ) ) |
| 43 |
42
|
rexlimdva |
|- ( ph -> ( E. c e. S ( M ` c ) = t -> t e. ( T i^i ~P C ) ) ) |
| 44 |
|
eqid |
|- U_ f e. t ( O ` ( L ` f ) ) = U_ f e. t ( O ` ( L ` f ) ) |
| 45 |
11
|
adantr |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> ( K e. HL /\ W e. H ) ) |
| 46 |
|
inss1 |
|- ( T i^i ~P C ) C_ T |
| 47 |
46
|
sseli |
|- ( t e. ( T i^i ~P C ) -> t e. T ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> t e. T ) |
| 49 |
|
inss2 |
|- ( T i^i ~P C ) C_ ~P C |
| 50 |
49
|
sseli |
|- ( t e. ( T i^i ~P C ) -> t e. ~P C ) |
| 51 |
50
|
elpwid |
|- ( t e. ( T i^i ~P C ) -> t C_ C ) |
| 52 |
51
|
adantl |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> t C_ C ) |
| 53 |
1 2 4 5 6 7 8 9 10 44 45 48 52
|
lcfr |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> U_ f e. t ( O ` ( L ` f ) ) e. S ) |
| 54 |
1 2 3 4 5 6 7 8 9 10 45 48 52 44
|
mapdrval |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> ( M ` U_ f e. t ( O ` ( L ` f ) ) ) = t ) |
| 55 |
|
fveqeq2 |
|- ( c = U_ f e. t ( O ` ( L ` f ) ) -> ( ( M ` c ) = t <-> ( M ` U_ f e. t ( O ` ( L ` f ) ) ) = t ) ) |
| 56 |
55
|
rspcev |
|- ( ( U_ f e. t ( O ` ( L ` f ) ) e. S /\ ( M ` U_ f e. t ( O ` ( L ` f ) ) ) = t ) -> E. c e. S ( M ` c ) = t ) |
| 57 |
53 54 56
|
syl2anc |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> E. c e. S ( M ` c ) = t ) |
| 58 |
57
|
ex |
|- ( ph -> ( t e. ( T i^i ~P C ) -> E. c e. S ( M ` c ) = t ) ) |
| 59 |
43 58
|
impbid |
|- ( ph -> ( E. c e. S ( M ` c ) = t <-> t e. ( T i^i ~P C ) ) ) |
| 60 |
28 59
|
bitrd |
|- ( ph -> ( t e. ran M <-> t e. ( T i^i ~P C ) ) ) |
| 61 |
60
|
eqrdv |
|- ( ph -> ran M = ( T i^i ~P C ) ) |
| 62 |
11
|
adantr |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> ( K e. HL /\ W e. H ) ) |
| 63 |
|
simprl |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> t e. S ) |
| 64 |
|
simprr |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> u e. S ) |
| 65 |
1 4 5 3 62 63 64
|
mapd11 |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> ( ( M ` t ) = ( M ` u ) <-> t = u ) ) |
| 66 |
65
|
biimpd |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> ( ( M ` t ) = ( M ` u ) -> t = u ) ) |
| 67 |
66
|
ralrimivva |
|- ( ph -> A. t e. S A. u e. S ( ( M ` t ) = ( M ` u ) -> t = u ) ) |
| 68 |
|
dff1o6 |
|- ( M : S -1-1-onto-> ( T i^i ~P C ) <-> ( M Fn S /\ ran M = ( T i^i ~P C ) /\ A. t e. S A. u e. S ( ( M ` t ) = ( M ` u ) -> t = u ) ) ) |
| 69 |
19 61 67 68
|
syl3anbrc |
|- ( ph -> M : S -1-1-onto-> ( T i^i ~P C ) ) |