Step |
Hyp |
Ref |
Expression |
1 |
|
mapd1o.h |
|- H = ( LHyp ` K ) |
2 |
|
mapd1o.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
mapd1o.m |
|- M = ( ( mapd ` K ) ` W ) |
4 |
|
mapd1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
mapd1o.s |
|- S = ( LSubSp ` U ) |
6 |
|
mapd1o.f |
|- F = ( LFnl ` U ) |
7 |
|
mapd1o.l |
|- L = ( LKer ` U ) |
8 |
|
mapd1o.d |
|- D = ( LDual ` U ) |
9 |
|
mapd1o.t |
|- T = ( LSubSp ` D ) |
10 |
|
mapd1o.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
11 |
|
mapd1o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
6
|
fvexi |
|- F e. _V |
13 |
12
|
rabex |
|- { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } e. _V |
14 |
|
eqid |
|- ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) = ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) |
15 |
13 14
|
fnmpti |
|- ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) Fn S |
16 |
1 4 5 6 7 2 3
|
mapdfval |
|- ( ( K e. HL /\ W e. H ) -> M = ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) ) |
17 |
11 16
|
syl |
|- ( ph -> M = ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) ) |
18 |
17
|
fneq1d |
|- ( ph -> ( M Fn S <-> ( t e. S |-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ t ) } ) Fn S ) ) |
19 |
15 18
|
mpbiri |
|- ( ph -> M Fn S ) |
20 |
12
|
rabex |
|- { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } e. _V |
21 |
|
eqid |
|- ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) = ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) |
22 |
20 21
|
fnmpti |
|- ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) Fn S |
23 |
1 4 5 6 7 2 3
|
mapdfval |
|- ( ( K e. HL /\ W e. H ) -> M = ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) ) |
24 |
11 23
|
syl |
|- ( ph -> M = ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) ) |
25 |
24
|
fneq1d |
|- ( ph -> ( M Fn S <-> ( t e. S |-> { g e. F | ( ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) /\ ( O ` ( L ` g ) ) C_ t ) } ) Fn S ) ) |
26 |
22 25
|
mpbiri |
|- ( ph -> M Fn S ) |
27 |
|
fvelrnb |
|- ( M Fn S -> ( t e. ran M <-> E. c e. S ( M ` c ) = t ) ) |
28 |
26 27
|
syl |
|- ( ph -> ( t e. ran M <-> E. c e. S ( M ` c ) = t ) ) |
29 |
11
|
adantr |
|- ( ( ph /\ c e. S ) -> ( K e. HL /\ W e. H ) ) |
30 |
|
simpr |
|- ( ( ph /\ c e. S ) -> c e. S ) |
31 |
1 4 5 6 7 2 3 29 30
|
mapdval |
|- ( ( ph /\ c e. S ) -> ( M ` c ) = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } ) |
32 |
|
eqid |
|- { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } = { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } |
33 |
1 2 4 5 6 7 8 9 10 32 29 30
|
lclkrs2 |
|- ( ( ph /\ c e. S ) -> ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) ) |
34 |
|
elin |
|- ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ( T i^i ~P C ) <-> ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ~P C ) ) |
35 |
12
|
rabex |
|- { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. _V |
36 |
35
|
elpw |
|- ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ~P C <-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) |
37 |
36
|
anbi2i |
|- ( ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ~P C ) <-> ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) ) |
38 |
34 37
|
bitr2i |
|- ( ( { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. T /\ { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } C_ C ) <-> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ( T i^i ~P C ) ) |
39 |
33 38
|
sylib |
|- ( ( ph /\ c e. S ) -> { f e. F | ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( O ` ( L ` f ) ) C_ c ) } e. ( T i^i ~P C ) ) |
40 |
31 39
|
eqeltrd |
|- ( ( ph /\ c e. S ) -> ( M ` c ) e. ( T i^i ~P C ) ) |
41 |
|
eleq1 |
|- ( ( M ` c ) = t -> ( ( M ` c ) e. ( T i^i ~P C ) <-> t e. ( T i^i ~P C ) ) ) |
42 |
40 41
|
syl5ibcom |
|- ( ( ph /\ c e. S ) -> ( ( M ` c ) = t -> t e. ( T i^i ~P C ) ) ) |
43 |
42
|
rexlimdva |
|- ( ph -> ( E. c e. S ( M ` c ) = t -> t e. ( T i^i ~P C ) ) ) |
44 |
|
eqid |
|- U_ f e. t ( O ` ( L ` f ) ) = U_ f e. t ( O ` ( L ` f ) ) |
45 |
11
|
adantr |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> ( K e. HL /\ W e. H ) ) |
46 |
|
inss1 |
|- ( T i^i ~P C ) C_ T |
47 |
46
|
sseli |
|- ( t e. ( T i^i ~P C ) -> t e. T ) |
48 |
47
|
adantl |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> t e. T ) |
49 |
|
inss2 |
|- ( T i^i ~P C ) C_ ~P C |
50 |
49
|
sseli |
|- ( t e. ( T i^i ~P C ) -> t e. ~P C ) |
51 |
50
|
elpwid |
|- ( t e. ( T i^i ~P C ) -> t C_ C ) |
52 |
51
|
adantl |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> t C_ C ) |
53 |
1 2 4 5 6 7 8 9 10 44 45 48 52
|
lcfr |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> U_ f e. t ( O ` ( L ` f ) ) e. S ) |
54 |
1 2 3 4 5 6 7 8 9 10 45 48 52 44
|
mapdrval |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> ( M ` U_ f e. t ( O ` ( L ` f ) ) ) = t ) |
55 |
|
fveqeq2 |
|- ( c = U_ f e. t ( O ` ( L ` f ) ) -> ( ( M ` c ) = t <-> ( M ` U_ f e. t ( O ` ( L ` f ) ) ) = t ) ) |
56 |
55
|
rspcev |
|- ( ( U_ f e. t ( O ` ( L ` f ) ) e. S /\ ( M ` U_ f e. t ( O ` ( L ` f ) ) ) = t ) -> E. c e. S ( M ` c ) = t ) |
57 |
53 54 56
|
syl2anc |
|- ( ( ph /\ t e. ( T i^i ~P C ) ) -> E. c e. S ( M ` c ) = t ) |
58 |
57
|
ex |
|- ( ph -> ( t e. ( T i^i ~P C ) -> E. c e. S ( M ` c ) = t ) ) |
59 |
43 58
|
impbid |
|- ( ph -> ( E. c e. S ( M ` c ) = t <-> t e. ( T i^i ~P C ) ) ) |
60 |
28 59
|
bitrd |
|- ( ph -> ( t e. ran M <-> t e. ( T i^i ~P C ) ) ) |
61 |
60
|
eqrdv |
|- ( ph -> ran M = ( T i^i ~P C ) ) |
62 |
11
|
adantr |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> ( K e. HL /\ W e. H ) ) |
63 |
|
simprl |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> t e. S ) |
64 |
|
simprr |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> u e. S ) |
65 |
1 4 5 3 62 63 64
|
mapd11 |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> ( ( M ` t ) = ( M ` u ) <-> t = u ) ) |
66 |
65
|
biimpd |
|- ( ( ph /\ ( t e. S /\ u e. S ) ) -> ( ( M ` t ) = ( M ` u ) -> t = u ) ) |
67 |
66
|
ralrimivva |
|- ( ph -> A. t e. S A. u e. S ( ( M ` t ) = ( M ` u ) -> t = u ) ) |
68 |
|
dff1o6 |
|- ( M : S -1-1-onto-> ( T i^i ~P C ) <-> ( M Fn S /\ ran M = ( T i^i ~P C ) /\ A. t e. S A. u e. S ( ( M ` t ) = ( M ` u ) -> t = u ) ) ) |
69 |
19 61 67 68
|
syl3anbrc |
|- ( ph -> M : S -1-1-onto-> ( T i^i ~P C ) ) |