Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrs.h |
|- H = ( LHyp ` K ) |
2 |
|
lclkrs.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lclkrs.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lclkrs.s |
|- S = ( LSubSp ` U ) |
5 |
|
lclkrs.f |
|- F = ( LFnl ` U ) |
6 |
|
lclkrs.l |
|- L = ( LKer ` U ) |
7 |
|
lclkrs.d |
|- D = ( LDual ` U ) |
8 |
|
lclkrs.t |
|- T = ( LSubSp ` D ) |
9 |
|
lclkrs.c |
|- C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ R ) } |
10 |
|
lclkrs.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
lclkrs.r |
|- ( ph -> R e. S ) |
12 |
|
ssrab2 |
|- { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ R ) } C_ F |
13 |
12
|
a1i |
|- ( ph -> { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ R ) } C_ F ) |
14 |
9
|
a1i |
|- ( ph -> C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ R ) } ) |
15 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
16 |
1 3 10
|
dvhlmod |
|- ( ph -> U e. LMod ) |
17 |
5 7 15 16
|
ldualvbase |
|- ( ph -> ( Base ` D ) = F ) |
18 |
13 14 17
|
3sstr4d |
|- ( ph -> C C_ ( Base ` D ) ) |
19 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
20 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
21 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
22 |
19 20 21 5
|
lfl0f |
|- ( U e. LMod -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F ) |
23 |
16 22
|
syl |
|- ( ph -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F ) |
24 |
1 3 2 21 10
|
dochoc1 |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) = ( Base ` U ) ) |
25 |
|
eqidd |
|- ( ph -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
26 |
19 20 21 5 6
|
lkr0f |
|- ( ( U e. LMod /\ ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F ) -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
27 |
16 23 26
|
syl2anc |
|- ( ph -> ( ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) <-> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) = ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
28 |
25 27
|
mpbird |
|- ( ph -> ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) = ( Base ` U ) ) |
29 |
28
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) = ( ._|_ ` ( Base ` U ) ) ) |
30 |
29
|
fveq2d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( ._|_ ` ( ._|_ ` ( Base ` U ) ) ) ) |
31 |
24 30 28
|
3eqtr4d |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
32 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
33 |
1 3 2 21 32
|
doch1 |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` ( Base ` U ) ) = { ( 0g ` U ) } ) |
34 |
10 33
|
syl |
|- ( ph -> ( ._|_ ` ( Base ` U ) ) = { ( 0g ` U ) } ) |
35 |
29 34
|
eqtrd |
|- ( ph -> ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) = { ( 0g ` U ) } ) |
36 |
32 4
|
lss0ss |
|- ( ( U e. LMod /\ R e. S ) -> { ( 0g ` U ) } C_ R ) |
37 |
16 11 36
|
syl2anc |
|- ( ph -> { ( 0g ` U ) } C_ R ) |
38 |
35 37
|
eqsstrd |
|- ( ph -> ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) C_ R ) |
39 |
9
|
lcfls1lem |
|- ( ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. C <-> ( ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. F /\ ( ._|_ ` ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) ) = ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) /\ ( ._|_ ` ( L ` ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) C_ R ) ) |
40 |
23 31 38 39
|
syl3anbrc |
|- ( ph -> ( ( Base ` U ) X. { ( 0g ` ( Scalar ` U ) ) } ) e. C ) |
41 |
40
|
ne0d |
|- ( ph -> C =/= (/) ) |
42 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
43 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
44 |
10
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( K e. HL /\ W e. H ) ) |
45 |
11
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> R e. S ) |
46 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> b e. C ) |
47 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
48 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> a e. C ) |
49 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> x e. ( Base ` ( Scalar ` D ) ) ) |
50 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
51 |
|
eqid |
|- ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) |
52 |
19 42 7 50 51 16
|
ldualsbase |
|- ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) ) |
53 |
52
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) ) |
54 |
49 53
|
eleqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> x e. ( Base ` ( Scalar ` U ) ) ) |
55 |
1 2 3 4 5 6 7 19 42 43 9 44 45 48 54
|
lclkrslem1 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( x ( .s ` D ) a ) e. C ) |
56 |
1 2 3 4 5 6 7 19 42 43 9 44 45 46 47 55
|
lclkrslem2 |
|- ( ( ph /\ ( x e. ( Base ` ( Scalar ` D ) ) /\ a e. C /\ b e. C ) ) -> ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C ) |
57 |
56
|
ralrimivvva |
|- ( ph -> A. x e. ( Base ` ( Scalar ` D ) ) A. a e. C A. b e. C ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C ) |
58 |
50 51 15 47 43 8
|
islss |
|- ( C e. T <-> ( C C_ ( Base ` D ) /\ C =/= (/) /\ A. x e. ( Base ` ( Scalar ` D ) ) A. a e. C A. b e. C ( ( x ( .s ` D ) a ) ( +g ` D ) b ) e. C ) ) |
59 |
18 41 57 58
|
syl3anbrc |
|- ( ph -> C e. T ) |