| Step |
Hyp |
Ref |
Expression |
| 1 |
|
doch1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
doch1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
doch1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 4 |
|
doch1.v |
|- V = ( Base ` U ) |
| 5 |
|
doch1.z |
|- .0. = ( 0g ` U ) |
| 6 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 7 |
1 6 2 4
|
dih1rn |
|- ( ( K e. HL /\ W e. H ) -> V e. ran ( ( DIsoH ` K ) ` W ) ) |
| 8 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 9 |
8 1 6 3
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ V e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` V ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` V ) ) ) ) |
| 10 |
7 9
|
mpdan |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` V ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` V ) ) ) ) |
| 11 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 12 |
1 11 6 2 4
|
dih1cnv |
|- ( ( K e. HL /\ W e. H ) -> ( `' ( ( DIsoH ` K ) ` W ) ` V ) = ( 1. ` K ) ) |
| 13 |
12
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` V ) ) = ( ( oc ` K ) ` ( 1. ` K ) ) ) |
| 14 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 15 |
14
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
| 16 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 17 |
16 11 8
|
opoc1 |
|- ( K e. OP -> ( ( oc ` K ) ` ( 1. ` K ) ) = ( 0. ` K ) ) |
| 18 |
15 17
|
syl |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` ( 1. ` K ) ) = ( 0. ` K ) ) |
| 19 |
13 18
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` V ) ) = ( 0. ` K ) ) |
| 20 |
19
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` V ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( 0. ` K ) ) ) |
| 21 |
16 1 6 2 5
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 0. ` K ) ) = { .0. } ) |
| 22 |
10 20 21
|
3eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` V ) = { .0. } ) |