Metamath Proof Explorer


Theorem dochoc0

Description: The zero subspace is closed. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses dochoc0.h
|- H = ( LHyp ` K )
dochoc0.u
|- U = ( ( DVecH ` K ) ` W )
dochoc0.o
|- ._|_ = ( ( ocH ` K ) ` W )
dochoc0.z
|- .0. = ( 0g ` U )
dochoc0.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion dochoc0
|- ( ph -> ( ._|_ ` ( ._|_ ` { .0. } ) ) = { .0. } )

Proof

Step Hyp Ref Expression
1 dochoc0.h
 |-  H = ( LHyp ` K )
2 dochoc0.u
 |-  U = ( ( DVecH ` K ) ` W )
3 dochoc0.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
4 dochoc0.z
 |-  .0. = ( 0g ` U )
5 dochoc0.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 eqid
 |-  ( Base ` U ) = ( Base ` U )
7 1 2 3 6 4 doch0
 |-  ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { .0. } ) = ( Base ` U ) )
8 7 fveq2d
 |-  ( ( K e. HL /\ W e. H ) -> ( ._|_ ` ( ._|_ ` { .0. } ) ) = ( ._|_ ` ( Base ` U ) ) )
9 1 2 3 6 4 doch1
 |-  ( ( K e. HL /\ W e. H ) -> ( ._|_ ` ( Base ` U ) ) = { .0. } )
10 8 9 eqtrd
 |-  ( ( K e. HL /\ W e. H ) -> ( ._|_ ` ( ._|_ ` { .0. } ) ) = { .0. } )
11 5 10 syl
 |-  ( ph -> ( ._|_ ` ( ._|_ ` { .0. } ) ) = { .0. } )