Metamath Proof Explorer


Theorem dochoc0

Description: The zero subspace is closed. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses dochoc0.h H = LHyp K
dochoc0.u U = DVecH K W
dochoc0.o ˙ = ocH K W
dochoc0.z 0 ˙ = 0 U
dochoc0.k φ K HL W H
Assertion dochoc0 φ ˙ ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 dochoc0.h H = LHyp K
2 dochoc0.u U = DVecH K W
3 dochoc0.o ˙ = ocH K W
4 dochoc0.z 0 ˙ = 0 U
5 dochoc0.k φ K HL W H
6 eqid Base U = Base U
7 1 2 3 6 4 doch0 K HL W H ˙ 0 ˙ = Base U
8 7 fveq2d K HL W H ˙ ˙ 0 ˙ = ˙ Base U
9 1 2 3 6 4 doch1 K HL W H ˙ Base U = 0 ˙
10 8 9 eqtrd K HL W H ˙ ˙ 0 ˙ = 0 ˙
11 5 10 syl φ ˙ ˙ 0 ˙ = 0 ˙