Metamath Proof Explorer


Theorem dochoc0

Description: The zero subspace is closed. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses dochoc0.h H=LHypK
dochoc0.u U=DVecHKW
dochoc0.o ˙=ocHKW
dochoc0.z 0˙=0U
dochoc0.k φKHLWH
Assertion dochoc0 φ˙˙0˙=0˙

Proof

Step Hyp Ref Expression
1 dochoc0.h H=LHypK
2 dochoc0.u U=DVecHKW
3 dochoc0.o ˙=ocHKW
4 dochoc0.z 0˙=0U
5 dochoc0.k φKHLWH
6 eqid BaseU=BaseU
7 1 2 3 6 4 doch0 KHLWH˙0˙=BaseU
8 7 fveq2d KHLWH˙˙0˙=˙BaseU
9 1 2 3 6 4 doch1 KHLWH˙BaseU=0˙
10 8 9 eqtrd KHLWH˙˙0˙=0˙
11 5 10 syl φ˙˙0˙=0˙