Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dochoc0
Next ⟩
dochoc1
Metamath Proof Explorer
Ascii
Unicode
Theorem
dochoc0
Description:
The zero subspace is closed.
(Contributed by
NM
, 16-Feb-2015)
Ref
Expression
Hypotheses
dochoc0.h
⊢
H
=
LHyp
⁡
K
dochoc0.u
⊢
U
=
DVecH
⁡
K
⁡
W
dochoc0.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
dochoc0.z
⊢
0
˙
=
0
U
dochoc0.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
Assertion
dochoc0
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
0
˙
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
dochoc0.h
⊢
H
=
LHyp
⁡
K
2
dochoc0.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
dochoc0.o
⊢
⊥
˙
=
ocH
⁡
K
⁡
W
4
dochoc0.z
⊢
0
˙
=
0
U
5
dochoc0.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
6
eqid
⊢
Base
U
=
Base
U
7
1
2
3
6
4
doch0
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
0
˙
=
Base
U
8
7
fveq2d
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
⊥
˙
⁡
0
˙
=
⊥
˙
⁡
Base
U
9
1
2
3
6
4
doch1
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
Base
U
=
0
˙
10
8
9
eqtrd
⊢
K
∈
HL
∧
W
∈
H
→
⊥
˙
⁡
⊥
˙
⁡
0
˙
=
0
˙
11
5
10
syl
⊢
φ
→
⊥
˙
⁡
⊥
˙
⁡
0
˙
=
0
˙