Metamath Proof Explorer


Theorem doch1

Description: Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses doch1.h H=LHypK
doch1.u U=DVecHKW
doch1.o ˙=ocHKW
doch1.v V=BaseU
doch1.z 0˙=0U
Assertion doch1 KHLWH˙V=0˙

Proof

Step Hyp Ref Expression
1 doch1.h H=LHypK
2 doch1.u U=DVecHKW
3 doch1.o ˙=ocHKW
4 doch1.v V=BaseU
5 doch1.z 0˙=0U
6 eqid DIsoHKW=DIsoHKW
7 1 6 2 4 dih1rn KHLWHVranDIsoHKW
8 eqid ocK=ocK
9 8 1 6 3 dochvalr KHLWHVranDIsoHKW˙V=DIsoHKWocKDIsoHKW-1V
10 7 9 mpdan KHLWH˙V=DIsoHKWocKDIsoHKW-1V
11 eqid 1.K=1.K
12 1 11 6 2 4 dih1cnv KHLWHDIsoHKW-1V=1.K
13 12 fveq2d KHLWHocKDIsoHKW-1V=ocK1.K
14 hlop KHLKOP
15 14 adantr KHLWHKOP
16 eqid 0.K=0.K
17 16 11 8 opoc1 KOPocK1.K=0.K
18 15 17 syl KHLWHocK1.K=0.K
19 13 18 eqtrd KHLWHocKDIsoHKW-1V=0.K
20 19 fveq2d KHLWHDIsoHKWocKDIsoHKW-1V=DIsoHKW0.K
21 16 1 6 2 5 dih0 KHLWHDIsoHKW0.K=0˙
22 10 20 21 3eqtrd KHLWH˙V=0˙