| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochvalr.o |
|
| 2 |
|
dochvalr.h |
|
| 3 |
|
dochvalr.i |
|
| 4 |
|
dochvalr.n |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
2 5 3 6
|
dihrnss |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 9 1 2 3 5 6 4
|
dochval |
|
| 11 |
7 10
|
syldan |
|
| 12 |
|
eqid |
|
| 13 |
|
hllat |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
|
hlclat |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
ssrab2 |
|
| 18 |
8 9
|
clatglbcl |
|
| 19 |
16 17 18
|
sylancl |
|
| 20 |
8 2 3
|
dihcnvcl |
|
| 21 |
17
|
a1i |
|
| 22 |
|
ssid |
|
| 23 |
2 3
|
dihcnvid2 |
|
| 24 |
22 23
|
sseqtrrid |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
sseq2d |
|
| 27 |
26
|
elrab |
|
| 28 |
20 24 27
|
sylanbrc |
|
| 29 |
8 12 9
|
clatglble |
|
| 30 |
16 21 28 29
|
syl3anc |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
sseq2d |
|
| 33 |
32
|
elrab |
|
| 34 |
23
|
adantr |
|
| 35 |
34
|
sseq1d |
|
| 36 |
|
simpll |
|
| 37 |
20
|
adantr |
|
| 38 |
|
simpr |
|
| 39 |
8 12 2 3
|
dihord |
|
| 40 |
36 37 38 39
|
syl3anc |
|
| 41 |
35 40
|
bitr3d |
|
| 42 |
41
|
biimpd |
|
| 43 |
42
|
expimpd |
|
| 44 |
33 43
|
biimtrid |
|
| 45 |
44
|
ralrimiv |
|
| 46 |
8 12 9
|
clatleglb |
|
| 47 |
16 20 21 46
|
syl3anc |
|
| 48 |
45 47
|
mpbird |
|
| 49 |
8 12 14 19 20 30 48
|
latasymd |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
fveq2d |
|
| 52 |
11 51
|
eqtrd |
|