Metamath Proof Explorer


Theorem dochvalr

Description: Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochvalr.o ˙ = oc K
dochvalr.h H = LHyp K
dochvalr.i I = DIsoH K W
dochvalr.n N = ocH K W
Assertion dochvalr K HL W H X ran I N X = I ˙ I -1 X

Proof

Step Hyp Ref Expression
1 dochvalr.o ˙ = oc K
2 dochvalr.h H = LHyp K
3 dochvalr.i I = DIsoH K W
4 dochvalr.n N = ocH K W
5 eqid DVecH K W = DVecH K W
6 eqid Base DVecH K W = Base DVecH K W
7 2 5 3 6 dihrnss K HL W H X ran I X Base DVecH K W
8 eqid Base K = Base K
9 eqid glb K = glb K
10 8 9 1 2 3 5 6 4 dochval K HL W H X Base DVecH K W N X = I ˙ glb K y Base K | X I y
11 7 10 syldan K HL W H X ran I N X = I ˙ glb K y Base K | X I y
12 eqid K = K
13 hllat K HL K Lat
14 13 ad2antrr K HL W H X ran I K Lat
15 hlclat K HL K CLat
16 15 ad2antrr K HL W H X ran I K CLat
17 ssrab2 y Base K | X I y Base K
18 8 9 clatglbcl K CLat y Base K | X I y Base K glb K y Base K | X I y Base K
19 16 17 18 sylancl K HL W H X ran I glb K y Base K | X I y Base K
20 8 2 3 dihcnvcl K HL W H X ran I I -1 X Base K
21 17 a1i K HL W H X ran I y Base K | X I y Base K
22 ssid X X
23 2 3 dihcnvid2 K HL W H X ran I I I -1 X = X
24 22 23 sseqtrrid K HL W H X ran I X I I -1 X
25 fveq2 y = I -1 X I y = I I -1 X
26 25 sseq2d y = I -1 X X I y X I I -1 X
27 26 elrab I -1 X y Base K | X I y I -1 X Base K X I I -1 X
28 20 24 27 sylanbrc K HL W H X ran I I -1 X y Base K | X I y
29 8 12 9 clatglble K CLat y Base K | X I y Base K I -1 X y Base K | X I y glb K y Base K | X I y K I -1 X
30 16 21 28 29 syl3anc K HL W H X ran I glb K y Base K | X I y K I -1 X
31 fveq2 y = z I y = I z
32 31 sseq2d y = z X I y X I z
33 32 elrab z y Base K | X I y z Base K X I z
34 23 adantr K HL W H X ran I z Base K I I -1 X = X
35 34 sseq1d K HL W H X ran I z Base K I I -1 X I z X I z
36 simpll K HL W H X ran I z Base K K HL W H
37 20 adantr K HL W H X ran I z Base K I -1 X Base K
38 simpr K HL W H X ran I z Base K z Base K
39 8 12 2 3 dihord K HL W H I -1 X Base K z Base K I I -1 X I z I -1 X K z
40 36 37 38 39 syl3anc K HL W H X ran I z Base K I I -1 X I z I -1 X K z
41 35 40 bitr3d K HL W H X ran I z Base K X I z I -1 X K z
42 41 biimpd K HL W H X ran I z Base K X I z I -1 X K z
43 42 expimpd K HL W H X ran I z Base K X I z I -1 X K z
44 33 43 syl5bi K HL W H X ran I z y Base K | X I y I -1 X K z
45 44 ralrimiv K HL W H X ran I z y Base K | X I y I -1 X K z
46 8 12 9 clatleglb K CLat I -1 X Base K y Base K | X I y Base K I -1 X K glb K y Base K | X I y z y Base K | X I y I -1 X K z
47 16 20 21 46 syl3anc K HL W H X ran I I -1 X K glb K y Base K | X I y z y Base K | X I y I -1 X K z
48 45 47 mpbird K HL W H X ran I I -1 X K glb K y Base K | X I y
49 8 12 14 19 20 30 48 latasymd K HL W H X ran I glb K y Base K | X I y = I -1 X
50 49 fveq2d K HL W H X ran I ˙ glb K y Base K | X I y = ˙ I -1 X
51 50 fveq2d K HL W H X ran I I ˙ glb K y Base K | X I y = I ˙ I -1 X
52 11 51 eqtrd K HL W H X ran I N X = I ˙ I -1 X