Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihrnss
Next ⟩
dihvalrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihrnss
Description:
The isomorphism H maps to a set of vectors.
(Contributed by
NM
, 14-Mar-2014)
Ref
Expression
Hypotheses
dihrnss.h
⊢
H
=
LHyp
⁡
K
dihrnss.u
⊢
U
=
DVecH
⁡
K
⁡
W
dihrnss.i
⊢
I
=
DIsoH
⁡
K
⁡
W
dihrnss.v
⊢
V
=
Base
U
Assertion
dihrnss
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
ran
⁡
I
→
X
⊆
V
Proof
Step
Hyp
Ref
Expression
1
dihrnss.h
⊢
H
=
LHyp
⁡
K
2
dihrnss.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
dihrnss.i
⊢
I
=
DIsoH
⁡
K
⁡
W
4
dihrnss.v
⊢
V
=
Base
U
5
eqid
⊢
LSubSp
⁡
U
=
LSubSp
⁡
U
6
1
2
3
5
dihrnlss
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
ran
⁡
I
→
X
∈
LSubSp
⁡
U
7
4
5
lssss
⊢
X
∈
LSubSp
⁡
U
→
X
⊆
V
8
6
7
syl
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
ran
⁡
I
→
X
⊆
V