Metamath Proof Explorer


Theorem dihrnss

Description: The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihrnss.h H = LHyp K
dihrnss.u U = DVecH K W
dihrnss.i I = DIsoH K W
dihrnss.v V = Base U
Assertion dihrnss K HL W H X ran I X V

Proof

Step Hyp Ref Expression
1 dihrnss.h H = LHyp K
2 dihrnss.u U = DVecH K W
3 dihrnss.i I = DIsoH K W
4 dihrnss.v V = Base U
5 eqid LSubSp U = LSubSp U
6 1 2 3 5 dihrnlss K HL W H X ran I X LSubSp U
7 4 5 lssss X LSubSp U X V
8 6 7 syl K HL W H X ran I X V