Description: The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihrnss.h | |- H = ( LHyp ` K ) |
|
dihrnss.u | |- U = ( ( DVecH ` K ) ` W ) |
||
dihrnss.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
dihrnss.v | |- V = ( Base ` U ) |
||
Assertion | dihrnss | |- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihrnss.h | |- H = ( LHyp ` K ) |
|
2 | dihrnss.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | dihrnss.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
4 | dihrnss.v | |- V = ( Base ` U ) |
|
5 | eqid | |- ( LSubSp ` U ) = ( LSubSp ` U ) |
|
6 | 1 2 3 5 | dihrnlss | |- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) ) |
7 | 4 5 | lssss | |- ( X e. ( LSubSp ` U ) -> X C_ V ) |
8 | 6 7 | syl | |- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ V ) |