Metamath Proof Explorer


Theorem dihrnlss

Description: The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihsslss.h H = LHyp K
dihsslss.u U = DVecH K W
dihsslss.i I = DIsoH K W
dihsslss.s S = LSubSp U
Assertion dihrnlss K HL W H X ran I X S

Proof

Step Hyp Ref Expression
1 dihsslss.h H = LHyp K
2 dihsslss.u U = DVecH K W
3 dihsslss.i I = DIsoH K W
4 dihsslss.s S = LSubSp U
5 1 2 3 4 dihsslss K HL W H ran I S
6 5 sselda K HL W H X ran I X S