Metamath Proof Explorer


Theorem dihrnlss

Description: The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihsslss.h 𝐻 = ( LHyp ‘ 𝐾 )
dihsslss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihsslss.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihsslss.s 𝑆 = ( LSubSp ‘ 𝑈 )
Assertion dihrnlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋𝑆 )

Proof

Step Hyp Ref Expression
1 dihsslss.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihsslss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dihsslss.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dihsslss.s 𝑆 = ( LSubSp ‘ 𝑈 )
5 1 2 3 4 dihsslss ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ran 𝐼𝑆 )
6 5 sselda ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋𝑆 )