Description: The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihsslss.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
dihsslss.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
dihsslss.i | ⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | ||
dihsslss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) | ||
Assertion | dihrnlss | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihsslss.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | dihsslss.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | dihsslss.i | ⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | dihsslss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) | |
5 | 1 2 3 4 | dihsslss | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran 𝐼 ⊆ 𝑆 ) |
6 | 5 | sselda | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ∈ 𝑆 ) |