| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochvalr.o |
|- ._|_ = ( oc ` K ) |
| 2 |
|
dochvalr.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dochvalr.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dochvalr.n |
|- N = ( ( ocH ` K ) ` W ) |
| 5 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
| 6 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
| 7 |
2 5 3 6
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
| 8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 9 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
| 10 |
8 9 1 2 3 5 6 4
|
dochval |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) -> ( N ` X ) = ( I ` ( ._|_ ` ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) ) ) ) |
| 11 |
7 10
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( N ` X ) = ( I ` ( ._|_ ` ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) ) ) ) |
| 12 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 13 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 14 |
13
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> K e. Lat ) |
| 15 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> K e. CLat ) |
| 17 |
|
ssrab2 |
|- { y e. ( Base ` K ) | X C_ ( I ` y ) } C_ ( Base ` K ) |
| 18 |
8 9
|
clatglbcl |
|- ( ( K e. CLat /\ { y e. ( Base ` K ) | X C_ ( I ` y ) } C_ ( Base ` K ) ) -> ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) e. ( Base ` K ) ) |
| 19 |
16 17 18
|
sylancl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) e. ( Base ` K ) ) |
| 20 |
8 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 21 |
17
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> { y e. ( Base ` K ) | X C_ ( I ` y ) } C_ ( Base ` K ) ) |
| 22 |
|
ssid |
|- X C_ X |
| 23 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
| 24 |
22 23
|
sseqtrrid |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ ( I ` ( `' I ` X ) ) ) |
| 25 |
|
fveq2 |
|- ( y = ( `' I ` X ) -> ( I ` y ) = ( I ` ( `' I ` X ) ) ) |
| 26 |
25
|
sseq2d |
|- ( y = ( `' I ` X ) -> ( X C_ ( I ` y ) <-> X C_ ( I ` ( `' I ` X ) ) ) ) |
| 27 |
26
|
elrab |
|- ( ( `' I ` X ) e. { y e. ( Base ` K ) | X C_ ( I ` y ) } <-> ( ( `' I ` X ) e. ( Base ` K ) /\ X C_ ( I ` ( `' I ` X ) ) ) ) |
| 28 |
20 24 27
|
sylanbrc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. { y e. ( Base ` K ) | X C_ ( I ` y ) } ) |
| 29 |
8 12 9
|
clatglble |
|- ( ( K e. CLat /\ { y e. ( Base ` K ) | X C_ ( I ` y ) } C_ ( Base ` K ) /\ ( `' I ` X ) e. { y e. ( Base ` K ) | X C_ ( I ` y ) } ) -> ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) ( le ` K ) ( `' I ` X ) ) |
| 30 |
16 21 28 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) ( le ` K ) ( `' I ` X ) ) |
| 31 |
|
fveq2 |
|- ( y = z -> ( I ` y ) = ( I ` z ) ) |
| 32 |
31
|
sseq2d |
|- ( y = z -> ( X C_ ( I ` y ) <-> X C_ ( I ` z ) ) ) |
| 33 |
32
|
elrab |
|- ( z e. { y e. ( Base ` K ) | X C_ ( I ` y ) } <-> ( z e. ( Base ` K ) /\ X C_ ( I ` z ) ) ) |
| 34 |
23
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> ( I ` ( `' I ` X ) ) = X ) |
| 35 |
34
|
sseq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> ( ( I ` ( `' I ` X ) ) C_ ( I ` z ) <-> X C_ ( I ` z ) ) ) |
| 36 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> ( K e. HL /\ W e. H ) ) |
| 37 |
20
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 38 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> z e. ( Base ` K ) ) |
| 39 |
8 12 2 3
|
dihord |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` X ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( ( I ` ( `' I ` X ) ) C_ ( I ` z ) <-> ( `' I ` X ) ( le ` K ) z ) ) |
| 40 |
36 37 38 39
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> ( ( I ` ( `' I ` X ) ) C_ ( I ` z ) <-> ( `' I ` X ) ( le ` K ) z ) ) |
| 41 |
35 40
|
bitr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> ( X C_ ( I ` z ) <-> ( `' I ` X ) ( le ` K ) z ) ) |
| 42 |
41
|
biimpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) /\ z e. ( Base ` K ) ) -> ( X C_ ( I ` z ) -> ( `' I ` X ) ( le ` K ) z ) ) |
| 43 |
42
|
expimpd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( z e. ( Base ` K ) /\ X C_ ( I ` z ) ) -> ( `' I ` X ) ( le ` K ) z ) ) |
| 44 |
33 43
|
biimtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( z e. { y e. ( Base ` K ) | X C_ ( I ` y ) } -> ( `' I ` X ) ( le ` K ) z ) ) |
| 45 |
44
|
ralrimiv |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> A. z e. { y e. ( Base ` K ) | X C_ ( I ` y ) } ( `' I ` X ) ( le ` K ) z ) |
| 46 |
8 12 9
|
clatleglb |
|- ( ( K e. CLat /\ ( `' I ` X ) e. ( Base ` K ) /\ { y e. ( Base ` K ) | X C_ ( I ` y ) } C_ ( Base ` K ) ) -> ( ( `' I ` X ) ( le ` K ) ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) <-> A. z e. { y e. ( Base ` K ) | X C_ ( I ` y ) } ( `' I ` X ) ( le ` K ) z ) ) |
| 47 |
16 20 21 46
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( `' I ` X ) ( le ` K ) ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) <-> A. z e. { y e. ( Base ` K ) | X C_ ( I ` y ) } ( `' I ` X ) ( le ` K ) z ) ) |
| 48 |
45 47
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) ( le ` K ) ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) ) |
| 49 |
8 12 14 19 20 30 48
|
latasymd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) = ( `' I ` X ) ) |
| 50 |
49
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) ) = ( ._|_ ` ( `' I ` X ) ) ) |
| 51 |
50
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( ._|_ ` ( ( glb ` K ) ` { y e. ( Base ` K ) | X C_ ( I ` y ) } ) ) ) = ( I ` ( ._|_ ` ( `' I ` X ) ) ) ) |
| 52 |
11 51
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( N ` X ) = ( I ` ( ._|_ ` ( `' I ` X ) ) ) ) |