| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochvalr.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 2 |
|
dochvalr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dochvalr.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochvalr.n |
⊢ 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 7 |
2 5 3 6
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 9 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 10 |
8 9 1 2 3 5 6 4
|
dochval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
| 11 |
7 10
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
| 12 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 13 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝐾 ∈ Lat ) |
| 15 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝐾 ∈ CLat ) |
| 17 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) |
| 18 |
8 9
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
16 17 18
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
8 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
17
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) |
| 22 |
|
ssid |
⊢ 𝑋 ⊆ 𝑋 |
| 23 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 24 |
22 23
|
sseqtrrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑦 = ( ◡ 𝐼 ‘ 𝑋 ) → ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
| 26 |
25
|
sseq2d |
⊢ ( 𝑦 = ( ◡ 𝐼 ‘ 𝑋 ) → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
| 27 |
26
|
elrab |
⊢ ( ( ◡ 𝐼 ‘ 𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ↔ ( ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
| 28 |
20 24 27
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) |
| 29 |
8 12 9
|
clatglble |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑋 ) ) |
| 30 |
16 21 28 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑋 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑧 ) ) |
| 32 |
31
|
sseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
| 33 |
32
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ↔ ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
| 34 |
23
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 35 |
34
|
sseq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑧 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
| 36 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 37 |
20
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
| 39 |
8 12 2 3
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑧 ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 40 |
36 37 38 39
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑧 ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 41 |
35 40
|
bitr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 42 |
41
|
biimpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 43 |
42
|
expimpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 44 |
33 43
|
biimtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 45 |
44
|
ralrimiv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) |
| 46 |
8 12 9
|
clatleglb |
⊢ ( ( 𝐾 ∈ CLat ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 47 |
16 20 21 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 48 |
45 47
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) |
| 49 |
8 12 14 19 20 30 48
|
latasymd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
| 50 |
49
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) = ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
| 51 |
50
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
| 52 |
11 51
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |