Step |
Hyp |
Ref |
Expression |
1 |
|
dochvalr.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
2 |
|
dochvalr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dochvalr.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochvalr.n |
⊢ 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
7 |
2 5 3 6
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
10 |
8 9 1 2 3 5 6 4
|
dochval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
11 |
7 10
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
12 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
13 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝐾 ∈ Lat ) |
15 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝐾 ∈ CLat ) |
17 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) |
18 |
8 9
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
16 17 18
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
8 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
17
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) |
22 |
|
ssid |
⊢ 𝑋 ⊆ 𝑋 |
23 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
24 |
22 23
|
sseqtrrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑦 = ( ◡ 𝐼 ‘ 𝑋 ) → ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
26 |
25
|
sseq2d |
⊢ ( 𝑦 = ( ◡ 𝐼 ‘ 𝑋 ) → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
27 |
26
|
elrab |
⊢ ( ( ◡ 𝐼 ‘ 𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ↔ ( ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
28 |
20 24 27
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) |
29 |
8 12 9
|
clatglble |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑋 ) ) |
30 |
16 21 28 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ( le ‘ 𝐾 ) ( ◡ 𝐼 ‘ 𝑋 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑧 ) ) |
32 |
31
|
sseq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
33 |
32
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ↔ ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
34 |
23
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
35 |
34
|
sseq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑧 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) ) |
36 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
37 |
20
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
39 |
8 12 2 3
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑧 ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
40 |
36 37 38 39
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊆ ( 𝐼 ‘ 𝑧 ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
41 |
35 40
|
bitr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ↔ ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
42 |
41
|
biimpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
43 |
42
|
expimpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼 ‘ 𝑧 ) ) → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
44 |
33 43
|
syl5bi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
45 |
44
|
ralrimiv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) |
46 |
8 12 9
|
clatleglb |
⊢ ( ( 𝐾 ∈ CLat ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
47 |
16 20 21 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
48 |
45 47
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) |
49 |
8 12 14 19 20 30 48
|
latasymd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) = ( ◡ 𝐼 ‘ 𝑋 ) ) |
50 |
49
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) = ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
51 |
50
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |
52 |
11 51
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) |