Metamath Proof Explorer


Theorem dochvalr

Description: Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochvalr.o = ( oc ‘ 𝐾 )
dochvalr.h 𝐻 = ( LHyp ‘ 𝐾 )
dochvalr.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dochvalr.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dochvalr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐼𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 dochvalr.o = ( oc ‘ 𝐾 )
2 dochvalr.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dochvalr.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dochvalr.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
7 2 5 3 6 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
8 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
9 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
10 8 9 1 2 3 5 6 4 dochval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) )
11 7 10 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) )
12 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
13 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
14 13 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝐾 ∈ Lat )
15 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
16 15 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝐾 ∈ CLat )
17 ssrab2 { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ⊆ ( Base ‘ 𝐾 )
18 8 9 clatglbcl ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) )
19 16 17 18 sylancl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ∈ ( Base ‘ 𝐾 ) )
20 8 2 3 dihcnvcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
21 17 a1i ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ⊆ ( Base ‘ 𝐾 ) )
22 ssid 𝑋𝑋
23 2 3 dihcnvid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
24 22 23 sseqtrrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ ( 𝐼 ‘ ( 𝐼𝑋 ) ) )
25 fveq2 ( 𝑦 = ( 𝐼𝑋 ) → ( 𝐼𝑦 ) = ( 𝐼 ‘ ( 𝐼𝑋 ) ) )
26 25 sseq2d ( 𝑦 = ( 𝐼𝑋 ) → ( 𝑋 ⊆ ( 𝐼𝑦 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) )
27 26 elrab ( ( 𝐼𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ↔ ( ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) )
28 20 24 27 sylanbrc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } )
29 8 12 9 clatglble ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ∧ ( 𝐼𝑋 ) ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ( le ‘ 𝐾 ) ( 𝐼𝑋 ) )
30 16 21 28 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ( le ‘ 𝐾 ) ( 𝐼𝑋 ) )
31 fveq2 ( 𝑦 = 𝑧 → ( 𝐼𝑦 ) = ( 𝐼𝑧 ) )
32 31 sseq2d ( 𝑦 = 𝑧 → ( 𝑋 ⊆ ( 𝐼𝑦 ) ↔ 𝑋 ⊆ ( 𝐼𝑧 ) ) )
33 32 elrab ( 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ↔ ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼𝑧 ) ) )
34 23 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
35 34 sseq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ⊆ ( 𝐼𝑧 ) ↔ 𝑋 ⊆ ( 𝐼𝑧 ) ) )
36 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
37 20 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) )
38 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ∈ ( Base ‘ 𝐾 ) )
39 8 12 2 3 dihord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ⊆ ( 𝐼𝑧 ) ↔ ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
40 36 37 38 39 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐼 ‘ ( 𝐼𝑋 ) ) ⊆ ( 𝐼𝑧 ) ↔ ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
41 35 40 bitr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ⊆ ( 𝐼𝑧 ) ↔ ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
42 41 biimpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ⊆ ( 𝐼𝑧 ) → ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
43 42 expimpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ ( 𝐼𝑧 ) ) → ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
44 33 43 syl5bi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } → ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
45 44 ralrimiv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 )
46 8 12 9 clatleglb ( ( 𝐾 ∈ CLat ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( 𝐼𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
47 16 20 21 46 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( 𝐼𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ( 𝐼𝑋 ) ( le ‘ 𝐾 ) 𝑧 ) )
48 45 47 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ( le ‘ 𝐾 ) ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) )
49 8 12 14 19 20 30 48 latasymd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) = ( 𝐼𝑋 ) )
50 49 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ) = ( ‘ ( 𝐼𝑋 ) ) )
51 50 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) = ( 𝐼 ‘ ( ‘ ( 𝐼𝑋 ) ) ) )
52 11 51 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐼𝑋 ) ) ) )