Metamath Proof Explorer


Theorem dochval

Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochval.b 𝐵 = ( Base ‘ 𝐾 )
dochval.g 𝐺 = ( glb ‘ 𝐾 )
dochval.o = ( oc ‘ 𝐾 )
dochval.h 𝐻 = ( LHyp ‘ 𝐾 )
dochval.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dochval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochval.v 𝑉 = ( Base ‘ 𝑈 )
dochval.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dochval ( ( ( 𝐾𝑌𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) )

Proof

Step Hyp Ref Expression
1 dochval.b 𝐵 = ( Base ‘ 𝐾 )
2 dochval.g 𝐺 = ( glb ‘ 𝐾 )
3 dochval.o = ( oc ‘ 𝐾 )
4 dochval.h 𝐻 = ( LHyp ‘ 𝐾 )
5 dochval.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
6 dochval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 dochval.v 𝑉 = ( Base ‘ 𝑈 )
8 dochval.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
9 1 2 3 4 5 6 7 8 dochfval ( ( 𝐾𝑌𝑊𝐻 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) ) )
10 9 adantr ( ( ( 𝐾𝑌𝑊𝐻 ) ∧ 𝑋𝑉 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) ) )
11 10 fveq1d ( ( ( 𝐾𝑌𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) ) ‘ 𝑋 ) )
12 7 fvexi 𝑉 ∈ V
13 12 elpw2 ( 𝑋 ∈ 𝒫 𝑉𝑋𝑉 )
14 13 biimpri ( 𝑋𝑉𝑋 ∈ 𝒫 𝑉 )
15 14 adantl ( ( ( 𝐾𝑌𝑊𝐻 ) ∧ 𝑋𝑉 ) → 𝑋 ∈ 𝒫 𝑉 )
16 fvex ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) ∈ V
17 sseq1 ( 𝑥 = 𝑋 → ( 𝑥 ⊆ ( 𝐼𝑦 ) ↔ 𝑋 ⊆ ( 𝐼𝑦 ) ) )
18 17 rabbidv ( 𝑥 = 𝑋 → { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } = { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } )
19 18 fveq2d ( 𝑥 = 𝑋 → ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) = ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) )
20 19 fveq2d ( 𝑥 = 𝑋 → ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) = ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) )
21 20 fveq2d ( 𝑥 = 𝑋 → ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) = ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) )
22 eqid ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) ) = ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) )
23 21 22 fvmptg ( ( 𝑋 ∈ 𝒫 𝑉 ∧ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) ∈ V ) → ( ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) )
24 15 16 23 sylancl ( ( ( 𝐾𝑌𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑥 ⊆ ( 𝐼𝑦 ) } ) ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) )
25 11 24 eqtrd ( ( ( 𝐾𝑌𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐺 ‘ { 𝑦𝐵𝑋 ⊆ ( 𝐼𝑦 ) } ) ) ) )