Step |
Hyp |
Ref |
Expression |
1 |
|
dochval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dochval.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
3 |
|
dochval.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
|
dochval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
dochval.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dochval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dochval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
8 |
|
dochval.n |
⊢ 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 2 3 4 5 6 7 8
|
dochfval |
⊢ ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ) |
11 |
10
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ‘ 𝑋 ) ) |
12 |
7
|
fvexi |
⊢ 𝑉 ∈ V |
13 |
12
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉 ) |
14 |
13
|
biimpri |
⊢ ( 𝑋 ⊆ 𝑉 → 𝑋 ∈ 𝒫 𝑉 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑋 ∈ 𝒫 𝑉 ) |
16 |
|
fvex |
⊢ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ∈ V |
17 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) ↔ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) ) ) |
18 |
17
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } = { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) = ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) = ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) = ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) = ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
23 |
21 22
|
fvmptg |
⊢ ( ( 𝑋 ∈ 𝒫 𝑉 ∧ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ∈ V ) → ( ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
24 |
15 16 23
|
sylancl |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( 𝑥 ∈ 𝒫 𝑉 ↦ ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |
25 |
11 24
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( 𝐺 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑦 ) } ) ) ) ) |