Metamath Proof Explorer


Theorem dochval2

Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014)

Ref Expression
Hypotheses dochval2.o = ( oc ‘ 𝐾 )
dochval2.h 𝐻 = ( LHyp ‘ 𝐾 )
dochval2.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dochval2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochval2.v 𝑉 = ( Base ‘ 𝑈 )
dochval2.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dochval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ) )

Proof

Step Hyp Ref Expression
1 dochval2.o = ( oc ‘ 𝐾 )
2 dochval2.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dochval2.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dochval2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dochval2.v 𝑉 = ( Base ‘ 𝑈 )
6 dochval2.n 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
8 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
9 7 8 1 2 3 4 5 6 dochval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ) ) )
10 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
11 10 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → 𝐾 ∈ CLat )
12 ssrab2 { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ⊆ ( Base ‘ 𝐾 )
13 7 8 clatglbcl ( ( 𝐾 ∈ CLat ∧ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ∈ ( Base ‘ 𝐾 ) )
14 11 12 13 sylancl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ∈ ( Base ‘ 𝐾 ) )
15 7 2 3 dihcnvid1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ) ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) )
16 14 15 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ) ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) )
17 7 8 2 3 4 5 dihglb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ) = { 𝑧 ∈ ran 𝐼𝑋𝑧 } )
18 17 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ) ) = ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) )
19 16 18 eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) = ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) )
20 19 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ) = ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) )
21 20 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝐼 ‘ ( ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼𝑥 ) } ) ) ) = ( 𝐼 ‘ ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ) )
22 9 21 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ) )