Step |
Hyp |
Ref |
Expression |
1 |
|
dochval2.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
2 |
|
dochval2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dochval2.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochval2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dochval2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
dochval2.n |
⊢ 𝑁 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
9 |
7 8 1 2 3 4 5 6
|
dochval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) ) ) |
10 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝐾 ∈ CLat ) |
12 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ⊆ ( Base ‘ 𝐾 ) |
13 |
7 8
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ⊆ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
11 12 13
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
7 2 3
|
dihcnvid1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ∈ ( Base ‘ 𝐾 ) ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) |
16 |
14 15
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) |
17 |
7 8 2 3 4 5
|
dihglb2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) = ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) |
18 |
17
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) ) = ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) |
19 |
16 18
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) = ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) |
20 |
19
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) = ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ) |
21 |
20
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝐼 ‘ ( ⊥ ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∈ ( Base ‘ 𝐾 ) ∣ 𝑋 ⊆ ( 𝐼 ‘ 𝑥 ) } ) ) ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ) ) |
22 |
9 21
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ) ) |