Metamath Proof Explorer


Theorem dochval2

Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014)

Ref Expression
Hypotheses dochval2.o ˙ = oc K
dochval2.h H = LHyp K
dochval2.i I = DIsoH K W
dochval2.u U = DVecH K W
dochval2.v V = Base U
dochval2.n N = ocH K W
Assertion dochval2 K HL W H X V N X = I ˙ I -1 z ran I | X z

Proof

Step Hyp Ref Expression
1 dochval2.o ˙ = oc K
2 dochval2.h H = LHyp K
3 dochval2.i I = DIsoH K W
4 dochval2.u U = DVecH K W
5 dochval2.v V = Base U
6 dochval2.n N = ocH K W
7 eqid Base K = Base K
8 eqid glb K = glb K
9 7 8 1 2 3 4 5 6 dochval K HL W H X V N X = I ˙ glb K x Base K | X I x
10 hlclat K HL K CLat
11 10 ad2antrr K HL W H X V K CLat
12 ssrab2 x Base K | X I x Base K
13 7 8 clatglbcl K CLat x Base K | X I x Base K glb K x Base K | X I x Base K
14 11 12 13 sylancl K HL W H X V glb K x Base K | X I x Base K
15 7 2 3 dihcnvid1 K HL W H glb K x Base K | X I x Base K I -1 I glb K x Base K | X I x = glb K x Base K | X I x
16 14 15 syldan K HL W H X V I -1 I glb K x Base K | X I x = glb K x Base K | X I x
17 7 8 2 3 4 5 dihglb2 K HL W H X V I glb K x Base K | X I x = z ran I | X z
18 17 fveq2d K HL W H X V I -1 I glb K x Base K | X I x = I -1 z ran I | X z
19 16 18 eqtr3d K HL W H X V glb K x Base K | X I x = I -1 z ran I | X z
20 19 fveq2d K HL W H X V ˙ glb K x Base K | X I x = ˙ I -1 z ran I | X z
21 20 fveq2d K HL W H X V I ˙ glb K x Base K | X I x = I ˙ I -1 z ran I | X z
22 9 21 eqtrd K HL W H X V N X = I ˙ I -1 z ran I | X z